• Title/Summary/Keyword: Oblique Waves

Search Result 105, Processing Time 0.035 seconds

Numerical Analysis of Waves Profiles coming with Oblique Angle to Permeable Submerged Breakwater on the Porous Seabed

  • Kim, Nam-Hyeong;Woo, Su-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.275-276
    • /
    • 2013
  • This analysis method is based on the wave pressure function with the continuity in the analytical region including fluid and porous structures. Wave profiles coming with oblique angle to permeable submerged breakwater on the porous seabed are computed numerically by using boundary element method. When compared with the existing results for the oblique incident wave, the results of this study show good agreement. The results indicate that wave profiles own high dependability regarding the change of oblique incident waves and permeable submerged breakwater on the porous seabed. Therefore, the analysis method of this study are estimated to be applied as an accurate numerical analysis referring to oblique incident waves and permeable submerged breakwater on the porous seabed in real sea environment.

  • PDF

Approximate Analysis Model and Detailed Unsteady Structure of Oblique Detonation Waves (경사 데토네이션파의 근사 해석 모델과 비정상 상세구조)

  • Choi Jeong-Yeol;Kim Don-Wan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.136-140
    • /
    • 2005
  • By extending one-dimensional ZND detonation structure analysis model, a simple model for two-dimensional oblique detonation wave structure analysis is presented by coupling Rankine-Hugoniot relation and chemical kinetics for oblique shock wave and oblique detonation wave. Base on this study, two-dimensional fluid dynamics analysis is carried out to investigate the detailed unsteady structure of oblique detonation waves involving triple point, transverse waves and cellular structures. CFD results provide a deeper insight into the detailed structure of oblique detonation waves, and the simple model could be used as a unified design tool for hypersonic propulsion systems employing oblique detonation wave as combustion mechanism.

  • PDF

Numerical and experimental analysis of hydroelastic responses of a high-speed trimaran in oblique irregular waves

  • Chen, Zhanyang;Gui, Hongbin;Dong, Pingsha;Yu, Changli
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.409-421
    • /
    • 2019
  • Investigation of hydroelastic responses of high-speed vessels in irregular sea state is of major interest in naval applications. A three dimensional nonlinear time-domain hydroelastic method in oblique irregular waves is developed, in which the nonlinear hydrostatic restoring force caused by instantaneous wetted surface and slamming force are considered. In order to solve the two technical problems caused by irregular sea state, the time-domain retardation function and Proportional, Integral and Derivative (PID) autopilot model are applied respectively. Besides, segmented model tests of a high-speed trimaran in oblique waves are performed. An oblique wave testing system for trimarans is designed and assembled. The measured results of main hull and cross-decks are analyzed, and the differences in distribution of load responses between trimarans and monohull ships are discussed. Finally, from the comparisons, it is confirmed that the present concept for dealing with nonlinear hydroelastic responses of ships in oblique irregular waves is reliable and accurate.

A Numerical Study on Pontoon Type Floating Breakwaters in Oblique Waves

  • Kim, Do-Young
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2000
  • A numerical investigation was made to examine characteristics of rectangular pontoon type floating breakwaters in oblique waves. Sway and heave wave exciting forces, roll moment acting on the floating breakwater and three motion reponses decrease as the incident wave angle increases for the most of the wave ranges. There exists a minimum wave transmission coefficient which is a function of wave frequency. In short wave range wave transmission coefficient increases as the incident wave angle increases. In long wave range, however, wave transmission coefficient decreases as the wave incident angle increases.

  • PDF

Numerical Analysis of Waves coming with Oblique Angle to Submerged Breakwater on the Porous Seabed (침투층 위의 잠제에 경사각을 가지고 입사하는 파랑의 수치해석)

  • Kim, Nam-Hyeong;Woo, Su-Min
    • Journal of Navigation and Port Research
    • /
    • v.37 no.3
    • /
    • pp.283-289
    • /
    • 2013
  • Wave profiles coming with oblique angle to trapezoidal submerged breakwater on the porous seabed are computed numerically by using a boundary element method. The analysis method is based on the wave pressure function with the continuity in the analytical region including fluid and structure. When compared with the existing results on the oblique incident wave, the results of this study show good agreement. The fluctuation of wave profiles is increased in the rear of the submerged breakwater due to the increase of the transmission coefficient, as the incident angle increases. In addition, in the case of the wave profiles passing over the submerged breakwater on porous seabed, it is able to verify that the attenuation of wave height occurs more significantly due to the wave energy dissipation than that of passing over the submerged breakwater on the impermeable seabed. The results indicate that wave profile own high dependability regarding the change of oblique incident waves and porous seabed. Therefore, the results of this study are estimated to be applied as an accurate numerical analysis referring to oblique incident waves and porous seabed in real sea environment.

Generation of Real Sea Waves based on Spectral Method and Wave Direction Analysis (스펙트럴 방법에 의한 실해역파 재현 및 파 방향 해석)

  • Lee, Jin-Ho;Choi, Jae-Woong;Kang, Yun-Tae;Ha, Mun-Keun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.212-219
    • /
    • 2005
  • Real sea waves in a towing wave basin have been generated using random periodic motion of the segmented wave makers and the wave reflections of sidewalls. Theoretically, the real sea waves can be described by the superposition of many random oblique waves. This paper introduces numerical real sea wave generation in a rectangular wave basin using spectral method that uses a superposition of orthogonal functions which have to satisfy the Laplace equation. Oblique regular waves, long crested irregular waves and real sea waves were simulated and met the requirement of sidewall wave reflection and wave absorption. MLM (Maximum Likelihood Method) and Spatial Fourier Transform were used in order to obtain propagated wave direction characteristics. The estimated results proved the usefulness of the method and the performances showed reasonable directional patterns comparing with generating patterns.

INSTABILITY OF OBLIQUE SHOCK WAVES WITH HEAT ADDITION (후방 발열이 있는 경사 충격파의 불안정성)

  • Choi, J.Y.;Shin, J.R.;Cho, D.R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.232-235
    • /
    • 2007
  • A comprehensive numerical study was carried out to identify the on-set condition of the cell structures of oblique detonation waves (ODWs). Mach 7 incoming flow was considered with all other flow variables were fixed except the flow turning angles varying from 35 to 38. For a given flow conditions theoretical maximum turning angle is $38.2^{\circ}$ where the oblique detonation wave may be stabilized. The effects of grid resolution were tested using grids from $255{\times}100$ to $4,005{\times}1,600$. The numerical smoked foil records exhibits the detonation cell structures with dual triple points running opposite directions for the 36 to 38 turning angles. As the turning angle get closer to the maximum angle the cell structures gets finer and the oscillatory behavior of the primary triple point was observed. The thermal occlusion behind the oblique detonation wave was observed for the $38^{\circ}$ turning angle.

  • PDF

Effect of Multi-directional Random Waves on Characteristics of 3-D Wave Field around Permeable Submerged Breakwaters (다방향 불규칙파가 투과성 잠제 주변의 3차원 파동장에 미치는 영향)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.68-78
    • /
    • 2012
  • This study proposes an improved 3-D model that includes a new non-reflected wave generation system for oblique incident and multi-directional random waves, which enables us to estimate the effect of the various wave-types on 3-D wave fields in a coastal area with permeable submerged breakwaters. Then, using the numerical results,the three-dimensional wave field characteristics around permeable submerged breakwaters are examined in cases of oblique incident and multi-directional random waves. Especially, the wave height, mean surface elevation and mean flow around the submerged breakwaters are discussed in relation to the variation of incident wave condition.

Effects of Fluid Resistance Coefficient on Wave Characteristics around Permeable Submerged Breakwater

  • Kim, Namhyeong;Woo, Sumin;Ko, Yongsu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.244-245
    • /
    • 2014
  • Recently, the studies on submerged breakwater are increased due to needs considering the quality of water and the scenic view. In this paper, waves coming to permeable submerged breakwater coming with oblique angle are computed numerically by using wave pressure function. The wave pressure function throughout the analytical region including the fluid and submerged breakwaters is used. An unknown quantity expressed by the wave pressure function is simulated by boundary element method. The maximum reflection coefficient shows the tendency of decrease with the increase of oblique angle and The reflection coefficient shows the tendency of increase with the increase of the values of the linear dissipation coefficient and the added mass coefficient. It is means that the reflection coefficients are strongly dependent on the oblique angle and resistance coefficients.

  • PDF