• Title/Summary/Keyword: Objects Recognition

Search Result 926, Processing Time 0.039 seconds

Enhanced Object Recognition System using Reference Point and Size (기준점과 크기를 사용한 객체 인식 시스템 향상)

  • Lee, Taehwan;Rhee, Eugene
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.350-355
    • /
    • 2018
  • In this paper, a system that can classify the objects in the image according to their sizes using the reference points is proposed. The object is studied with samples. The proposed system recognizes and classifies objects by the size in images acquired using a mobile phone camera. Conventional object recognition systems classify objects using only object size. As the size of the object varies depending on the distance, such systems have the disadvantage that an error may occurs if the image is not acquired with a certain distance. In order to overcome the limitation of the conventional object recognition system, the object recognition system proposed in this paper can classify the object regardless of the distance with comparing the size of the reference point by placing it at the upper left corner of the image.

CONSIDERATION OF THE RELATION BETWEEN DISTANCE AND CHANGE OF PANEL COLOR BASED ON AERIAL PERSPECTIVE

  • Horiuchi, Hitoshi;Kaneko, Satoru;Sato, Mie;Ozaki, Koichi;Kasuga, Masao
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.695-698
    • /
    • 2009
  • Three-dimensional (3D) shape recognition and distance recognition methods utilizing monocular camera systems have been required for field of virtual-reality, computer graphics, measurement technology and robot technology. There have been many studies regarding 3D shape and distance recognition based on geometric and optical information, and it is now possible to accurately measure the geometric information of an object at short range distances. However, these methods cannot currently be applied to long range objects. In the field of virtual-reality, all visual objects must be presented at widely varying ranges, even though some objects will be hazed over. In order to achieve distance recognition from a landscape image, we focused on the use of aerial perspective to simulate a type of depth perception and investigated the relationship between distance and color perception. The applicability of our proposed method was demonstrated in experimental results.

  • PDF

An efficient recognition of round objects using the curve segment grouping (곡선 조각의 군집화에 의한 둥근 물체의 효과적인 인식)

  • 성효경;최흥문
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.9
    • /
    • pp.77-83
    • /
    • 1997
  • Based on the curve segment grouping, an efficient recognition of round objects form partially occuluded round boundaries is proposed. Curve segments are extracted from an image using a criterion based on the intra-segment curvature and local contrast. During the curve segment extraction the boundaries of pratially occluding and occuluded objects are segmented to different curve segments. The extracted segments of constant intra-segment curvature are grouped to different curve segments. The extracted segments of constant intra-segment curvature are grouped nto a round boundary by the proposed grouping algorithm using inter-segment curvature which gives the relatinships among the curve segments of the same round boundary. The 1st and the 2nd order moments are used for the parameter estimation of the best fitted ellipse with round boundary, and then recognition is perfomed based on the estimated parameters. The proposed scheme processes in segment unit and is more efficient in computational complexity and memory requirements those that of the conventional scheme which processed in pixel units. Experimental results show that the proposed technique is very efficient in recognizing the round object sfrom the real images with apples and pumpkins.

  • PDF

Photon Counting Linear Discriminant Analysis with Integral Imaging for Occluded Target Recognition

  • Yeom, Seok-Won;Javidi, Bahram
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.88-92
    • /
    • 2008
  • This paper discusses a photon-counting linear discriminant analysis (LDA) with computational integral imaging (II). The computational II method reconstructs three-dimensional (3D) objects on the reconstruction planes located at arbitrary depth-levels. A maximum likelihood estimation (MLE) can be used to estimate the Poisson parameters of photon counts in the reconstruction space. The photon-counting LDA combined with the computational II method is developed in order to classify partially occluded objects with photon-limited images. Unknown targets are classified with the estimated Poisson parameters while reconstructed irradiance images are trained. It is shown that a low number of photons are sufficient to classify occluded objects with the proposed method.

Object Recognition using 3D Depth Measurement System. (3차원 거리 측정 장치를 이용한 물체 인식)

  • Gim, Seong-Chan;Ko, Su-Hong;Kim, Hyong-Suk
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.941-942
    • /
    • 2006
  • A depth measurement system to recognize 3D shape of objects using single camera, line laser and a rotating mirror has been investigated. The camera and the light source are fixed, facing the rotating mirror. The laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The camera detects the laser light location on object surfaces through the same mirror. The scan over the area to be measured is done by mirror rotation. The Segmentation process of object recognition is performed using the depth data of restored 3D data. The Object recognition domain can be reduced by separating area of interest objects from complex background.

  • PDF

Image Processing for Video Images of Buoy Motion

  • Kim, Baeck-Oon;Cho, Hong-Yeon
    • Ocean Science Journal
    • /
    • v.40 no.4
    • /
    • pp.213-220
    • /
    • 2005
  • In this paper, image processing technique that reduces video images of buoy motion to yield time series of image coordinates of buoy objects will be investigated. The buoy motion images are noisy due to time-varying brightness as well as non-uniform background illumination. The occurrence of boats, wakes, and wind-induced white caps interferes significantly in recognition of buoy objects. Thus, semi-automated procedures consisting of object recognition and image measurement aspects will be conducted. These offer more satisfactory results than a manual process. Spectral analysis shows that the image coordinates of buoy objects represent wave motion well, indicating its usefulness in the analysis of wave characteristics.

CAD-Based 3-D Object Recognition Using Hough Transform (Hough 변환을 이용한 캐드 기반 삼차원 물체 인식)

  • Ja Seong Ku;Sang Uk Lee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.9
    • /
    • pp.1171-1180
    • /
    • 1995
  • In this paper, we present a 3-D object recognition system in which the 3-D Hough transform domain is employed to represent the 3-D objects. In object modeling step, the features for recognition are extracted from the CAD models of objects to be recognized. Since the approach is based on the CAD models, the accuracy and flexibility are greatly improved. In matching stage, the sensed image is compared with the stored model, which is assumed to yield a distortion (location and orientation) in the 3-D Hough transform domain. The high dimensional (6-D) parameter space, which defines the distortion, is decomposed into the low dimensional space for an efficient recognition. At first we decompose the distortion parameter into the rotation parameter and the translation parameter, and the rotation parameter is further decomposed into the viewing direction and the rotational angle. Since we use the 3-D Hough transform domain of the input images directly, the sensitivity to the noise and the high computational complexity could be significantly alleviated. The results show that the proposed 3-D object recognition system provides a satisfactory performance on the real range images.

  • PDF

A Study on The Classification of Target-objects with The Deep-learning Model in The Vision-images (딥러닝 모델을 이용한 비전이미지 내의 대상체 분류에 관한 연구)

  • Cho, Youngjoon;Kim, Jongwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.20-25
    • /
    • 2021
  • The target-object classification method was implemented using a deep-learning-based detection model in real-time images. The object detection model was a deep-learning-based detection model that allowed extensive data collection and machine learning processes to classify similar target-objects. The recognition model was implemented by changing the processing structure of the detection model and combining developed the vision-processing module. To classify the target-objects, the identity and similarity were defined and applied to the detection model. The use of the recognition model in industry was also considered by verifying the effectiveness of the recognition model using the real-time images of an actual soccer game. The detection model and the newly constructed recognition model were compared and verified using real-time images. Furthermore, research was conducted to optimize the recognition model in a real-time environment.

Distortion invariant pattern recognition using Modified synthetic HMT (수정 합성 HMT를 이용한 왜곡불변 패턴 인식)

  • 현영길;김종찬;김정우;도양회;김수중
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7B
    • /
    • pp.1361-1369
    • /
    • 1999
  • A hit-miss transform(HMT) using modified synthetic structuring elements(SEs) for distortion-invariant recognition of multiple objects is proposed. A fundamental problem in an HMT is the determination of the optimal SE needed to improve the false alarm rate, and detect distorted objects with various shapes. The proposed synthetic methods of SE provide good solutions against this problem. One is the multistage synthesis of each true class SE using only set theory, and the other is the multistage synthesis of each true class and false class SE using set theory and SDF(synthetic discriminant function) synthesis method. Simulation results show the proposed methods can be used for the recognition of distorted intraclass objects and the discrimination of similar interclass objects.

  • PDF

Analysis of the Recognition Ability of Objects for the Smart Sensor According to the Input Condition Changing ( I ) (입력 조건에 따른 지능센서의 대상물 인식능력 분석( I ))

  • Hwang, Seong-Youn;Hong, Dong-Pyo;Chae, Hee-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.48-55
    • /
    • 2002
  • This paper deals with the sensing ability of the smart sensor that has the sensing ability to distinguish materials according to the input condition changing. This is a study of dynamic characteristics of sensor. We have developed a new signal processing method that can distinguish among different materials. The smart sensor was developed for recognition of materials. Experiments and analysis were executed to estimate ability to recognize objects according to the input condition. First, we developed the advanced smart sensor. Second, we developed the new method, which has the capability sensing of different materials. Dynamic characteristics of the smart sensor were evaluated relatively through a new $R_{SAI}$ method. According to frequency changing, influence of the smart sensor are evaluated through a new recognition index ($R_{SAI}$) that ratio of sensing ability index. Applications of this method are for finding abnormal conditions of objects (auto-manufacturing), feeling of objects (medical product), robotics, safely diagnosis of structure, etc.