• 제목/요약/키워드: Objects Recognition

검색결과 929건 처리시간 0.025초

Affine Category Shape Model을 이용한 형태 기반 범주 물체 인식 기법 (A New Shape-Based Object Category Recognition Technique using Affine Category Shape Model)

  • 김동환;최유경;박성기
    • 로봇학회논문지
    • /
    • 제4권3호
    • /
    • pp.185-191
    • /
    • 2009
  • This paper presents a new shape-based algorithm using affine category shape model for object category recognition and model learning. Affine category shape model is a graph of interconnected nodes whose geometric interactions are modeled using pairwise potentials. In its learning phase, it can efficiently handle large pose variations of objects in training images by estimating 2-D homography transformation between the model and the training images. Since the pairwise potentials are defined on only relative geometric relationship betweenfeatures, the proposed matching algorithm is translation and in-plane rotation invariant and robust to affine transformation. We apply spectral matching algorithm to find feature correspondences, which are then used as initial correspondences for RANSAC algorithm. The 2-D homography transformation and the inlier correspondences which are consistent with this estimate can be efficiently estimated through RANSAC, and new correspondences also can be detected by using the estimated 2-D homography transformation. Experimental results on object category database show that the proposed algorithm is robust to pose variation of objects and provides good recognition performance.

  • PDF

화자인식을 이용한 대화 상황정보 어노테이션 (Conversation Context Annotation using Speaker Detection)

  • 박승보;김유원;조근식
    • 한국멀티미디어학회논문지
    • /
    • 제12권9호
    • /
    • pp.1252-1261
    • /
    • 2009
  • 효율적인 영상의 검색과 동영상의 축약을 위해 선행되어야 하는 것이 동영상 정보에서 의미를 추출하여 영상 정보를 어노테이션 하는 작업이다. 어노테이션을 위한 동영상의 의미 정보는 다양한 방식에 의해 얻어질 수 있다. 동영상의 의미정보는 영상의 개체들의 단순한 정체 정보를 추출하는 방식과 개체들이 만들어 내는 상황정보를 추출하는 방식으로 구분될 수 있다. 하지만 개체들의 단순 정보만으로 어노테이션을 진행하기 보다는 개체들 간의 상호작용이나 관계에 대한 표현을 개체 정보와 함께 고려하여 대화 상황에 대한 온전한 의미를 어노테이션 하는 것이 더욱 좋다. 본 논문은 영상으로부터 화자정보를 추출하고 대화상황을 구성하여 어노테이션 하는 것에 대한 연구이다. 인식된 얼굴 정보로부터 현재 영상에 누가 있는 지 알아낸 후 입의 움직임을 분석하여 화자가 누구인지 알아내고, 화자와 청자 및 자막의 유무를 통해 대화 상황을 추출하여 XML로 변환하는 방법을 본 연구에서 제안한다.

  • PDF

고속 푸리에 합성곱을 이용한 파지 조건에 강인한 촉각센서 기반 물체 인식 방법 (Tactile Sensor-based Object Recognition Method Robust to Gripping Conditions Using Fast Fourier Convolution Algorithm)

  • 허현석;김정중;고두열;김창현;이승철
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.365-372
    • /
    • 2022
  • The accurate object recognition is important for the precise and accurate manipulation. To enhance the recognition performance, we can use various types of sensors. In general, acquired data from sensors have a high sampling rate. So, in the past, the RNN-based model is commonly used to handle and analyze the time-series sensor data. However, the RNN-based model has limitations of excessive parameters. CNN-based model also can be used to analyze time-series input data. However, CNN-based model also has limitations of the small receptive field in early layers. For this reason, when we use a CNN-based model, model architecture should be deeper and heavier to extract useful global features. Thus, traditional methods like RN N -based and CN N -based model needs huge amount of learning parameters. Recently studied result shows that Fast Fourier Convolution (FFC) can overcome the limitations of traditional methods. This operator can extract global features from the first hidden layer, so it can be effectively used for feature extracting of sensor data that have a high sampling rate. In this paper, we propose the algorithm to recognize objects using tactile sensor data and the FFC model. The data was acquired from 11 types of objects to verify our posed model. We collected pressure, current, position data when the gripper grasps the objects by random force. As a result, the accuracy is enhanced from 84.66% to 91.43% when we use the proposed FFC-based model instead of the traditional model.

인간로봇 상호작용을 위한 언어적 인지시스템 기반의 비강체 인지 (The Cognition of Non-Ridged Objects Using Linguistic Cognitive System for Human-Robot Interaction)

  • 안현식
    • 제어로봇시스템학회논문지
    • /
    • 제15권11호
    • /
    • pp.1115-1121
    • /
    • 2009
  • For HRI (Human-Robot Interaction) in daily life, robots need to recognize non-rigid objects such as clothes and blankets. However, the recognition of non-rigid objects is challenging because of the variation of the shapes according to the places and laying manners. In this paper, the cognition of non-rigid object based on a cognitive system is presented. The characteristics of non-rigid objects are analysed in the view of HRI and referred to design a framework for the cognition of them. We adopt a linguistic cognitive system for describing all of the events happened to robots. When an event related to the non-rigid objects is occurred, the cognitive system describes the event into a sentential form and stores it at a sentential memory, and depicts the objects with a spatial model for being used as references. The cognitive system parses each sentence syntactically and semantically, in which the nouns meaning objects are connected to their models. For answering the questions of humans, sentences are retrieved by searching temporal information in the sentential memory and by spatial reasoning in a schematic imagery. Experiments show the feasibility of the cognitive system for cognizing non-rigid objects in HRI.

상관성있는 VQ-HMM을 이용한 고립 단어 인식 (Isolated Words Recognition using Correlation VQ-HMM)

  • 이진수
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1993년도 학술논문발표회 논문집 제12권 1호
    • /
    • pp.109-112
    • /
    • 1993
  • In this paper, we propose the modified VQ, applied correlation between codewords in order to reduce the error rate due to personal and speakers' temporal variation. Such a modified VQ is used in the stage of preprocessing of HMM and the temporal variation is absorbed by nonlinear Decimation and Interpolation of vowel part that we obtain higher recognition rate than not so case. The objects of experiment are Korea 142 DDD regional names and we show that the proposed method increase the recognition rate.

  • PDF

물체 인식을 위한 시각 주목 알고리즘 (Visual Attention Algorithm for Object Recognition)

  • 류광근;이상훈;서일홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.306-308
    • /
    • 2006
  • We propose an attention based object recognition system, to recognize object fast and robustly. For this we calculate visual stimulus degrees and make saliency maps. Through this map we find a strongly attentive part of image by stimulus degrees, where local features are extracted to recognize objects.

  • PDF

다면기법 SPFACS 영상객체를 이용한 AAM 알고리즘 적용 미소검출 설계 분석 (Using a Multi-Faced Technique SPFACS Video Object Design Analysis of The AAM Algorithm Applies Smile Detection)

  • 최병관
    • 디지털산업정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.99-112
    • /
    • 2015
  • Digital imaging technology has advanced beyond the limits of the multimedia industry IT convergence, and to develop a complex industry, particularly in the field of object recognition, face smart-phones associated with various Application technology are being actively researched. Recently, face recognition technology is evolving into an intelligent object recognition through image recognition technology, detection technology, the detection object recognition through image recognition processing techniques applied technology is applied to the IP camera through the 3D image object recognition technology Face Recognition been actively studied. In this paper, we first look at the essential human factor, technical factors and trends about the technology of the human object recognition based SPFACS(Smile Progress Facial Action Coding System)study measures the smile detection technology recognizes multi-faceted object recognition. Study Method: 1)Human cognitive skills necessary to analyze the 3D object imaging system was designed. 2)3D object recognition, face detection parameter identification and optimal measurement method using the AAM algorithm inside the proposals and 3)Face recognition objects (Face recognition Technology) to apply the result to the recognition of the person's teeth area detecting expression recognition demonstrated by the effect of extracting the feature points.

3차원 영상 객체 휴먼팩터 알고리즘 측정에 관한 연구 (A Research on the Measurement of Human Factor Algorithm 3D Object)

  • 최병관
    • 디지털산업정보학회논문지
    • /
    • 제14권2호
    • /
    • pp.35-47
    • /
    • 2018
  • The 4th industrial revolution, digital image technology has developed beyond the limit of multimedia industry to advanced IT fusion and composite industry. Particularly, application technology related to HCI element algorithm in 3D image object recognition field is actively developed. 3D image object recognition technology evolved into intelligent image sensing and recognition technology through 3D modeling. In particular, image recognition technology has been actively studied in image processing using object recognition recognition processing, face recognition, object recognition, and 3D object recognition. In this paper, we propose a research method of human factor 3D image recognition technology applying human factor algorithm for 3D object recognition. 1. Methods of 3D object recognition using 3D modeling, image system analysis, design and human cognitive technology analysis 2. We propose a 3D object recognition parameter estimation method using FACS algorithm and optimal object recognition measurement method. In this paper, we propose a method to effectively evaluate psychological research techniques using 3D image objects. We studied the 3D 3D recognition and applied the result to the object recognition element to extract and study the characteristic points of the recognition technology.

소나 영상 기반의 수중 물체 인식과 추종을 위한 구조 : Part 1. 소나 영상의 특성을 고려한 인공 표식물 설계 및 인식 (A Framework of Recognition and Tracking for Underwater Objects based on Sonar Images : Part 1. Design and Recognition of Artificial Landmark considering Characteristics of Sonar Images)

  • 이영준;이지홍;최현택
    • 전자공학회논문지
    • /
    • 제51권2호
    • /
    • pp.182-189
    • /
    • 2014
  • 본 논문은 탁도의 영향으로 사용이 제한적인 수중 광학 카메라의 대안으로 수중 영상 소나(imaging sonar)를 사용하여 수중 물체를 인식하여 추종하는 구조를 제안한다. Part 1에서, 영상 소나의 현실적인 성능을 고려한 2차원 인공 표식의 설계 방법과 인식 방법을 제안한다. 특히 영상 소나와 초음파의 특성을 분석하여 피인식성을 극대화 할 수 있는 재료를 선택하였으며, 물체의 모델링이 쉬운 무지향성이며 단순한 외형을 채택하고, 표식으로 사용이 가능한 영역 기반 특징 요소를 포함한 내부 형태를 제안하였다. 또한 제안한 인공 표식을 실시간으로 인식할 수 있는 방법을 제안하였다. 이 방법은 외곽선 추출, 허프-원-검출기에 의한 유사도 및 위치 추정, 형상 행렬의 비교에 의한 표식의 분류하는 알고리즘을 포함하고 있다. 제안한 인공 표식과 인식 알고리즘의 유용함을 DIDSON (영상 소나)를 사용한 수조 실험으로 검증하였다.