• Title/Summary/Keyword: Object-detection algorithm

Search Result 941, Processing Time 0.027 seconds

Implementation of Improved Object Detection and Tracking based on Camshift and SURF for Augmented Reality Service (증강현실 서비스를 위한 Camshift와 SURF를 개선한 객체 검출 및 추적 구현)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.97-102
    • /
    • 2017
  • Object detection and tracking have become one of the most active research areas in the past few years, and play an important role in computer vision applications over our daily life. Many tracking techniques are proposed, and Camshift is an effective algorithm for real time dynamic object tracking, which uses only color features, so that the algorithm is sensitive to illumination and some other environmental elements. This paper presents and implements an effective moving object detection and tracking to reduce the influence of illumination interference, which improve the performance of tracking under similar color background. The implemented prototype system recognizes object using invariant features, and reduces the dimension of feature descriptor to rectify the problems. The experimental result shows that that the system is superior to the existing methods in processing time, and maintains better problem ratios in various environments.

  • PDF

Performance Analysis of Viola & Jones Face Detection Algorithm (Viola & Jones 얼굴 검출 알고리즘의 성능 분석)

  • Oh, Jeong-su;Heo, Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.477-480
    • /
    • 2018
  • Viola and Jones object detection algorithm is a representative face detection algorithm. The algorithm uses Haar-like features for face expression and uses a cascade-Adaboost algorithm consisting of strong classifiers, a linear combination of weak classifiers for classification. This algorithm requires several parameter settings for its implementation and the set values affect its performance. This paper analyzes face detection performance according to the parameters set in the algorithm.

  • PDF

Moving Object Detection Using Sparse Approximation and Sparse Coding Migration

  • Li, Shufang;Hu, Zhengping;Zhao, Mengyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2141-2155
    • /
    • 2020
  • In order to meet the requirements of background change, illumination variation, moving shadow interference and high accuracy in object detection of moving camera, and strive for real-time and high efficiency, this paper presents an object detection algorithm based on sparse approximation recursion and sparse coding migration in subspace. First, low-rank sparse decomposition is used to reduce the dimension of the data. Combining with dictionary sparse representation, the computational model is established by the recursive formula of sparse approximation with the video sequences taken as subspace sets. And the moving object is calculated by the background difference method, which effectively reduces the computational complexity and running time. According to the idea of sparse coding migration, the above operations are carried out in the down-sampling space to further reduce the requirements of computational complexity and memory storage, and this will be adapt to multi-scale target objects and overcome the impact of large anomaly areas. Finally, experiments are carried out on VDAO datasets containing 59 sets of videos. The experimental results show that the algorithm can detect moving object effectively in the moving camera with uniform speed, not only in terms of low computational complexity but also in terms of low storage requirements, so that our proposed algorithm is suitable for detection systems with high real-time requirements.

Deep-Learning Based Real-time Fire Detection Using Object Tracking Algorithm

  • Park, Jonghyuk;Park, Dohyun;Hyun, Donghwan;Na, Youmin;Lee, Soo-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this paper, we propose a fire detection system based on CCTV images using an object tracking technology with YOLOv4 model capable of real-time object detection and a DeepSORT algorithm. The fire detection model was learned from 10800 pieces of learning data and verified through 1,000 separate test sets. Subsequently, the fire detection rate in a single image and fire detection maintenance performance in the image were increased by tracking the detected fire area through the DeepSORT algorithm. It is verified that a fire detection rate for one frame in video data or single image could be detected in real time within 0.1 second. In this paper, our AI fire detection system is more stable and faster than the existing fire accident detection system.

Development of an Edge-Based Algorithm for Moving-Object Detection Using Background Modeling

  • Shin, Won-Yong;Kabir, M. Humayun;Hoque, M. Robiul;Yang, Sung-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.193-197
    • /
    • 2014
  • Edges are a robust feature for object detection. In this paper, we present an edge-based background modeling method for the detection of moving objects. The edges in the image frames were mapped using robust Canny edge detector. Two edge maps were created and combined to calculate the ultimate moving-edge map. By selecting all the edge pixels of the current frame above the defined threshold of the ultimate moving edges, a temporary background-edge map was created. If the frequencies of the temporary background edge pixels for several frames were above the threshold, then those edge pixels were treated as background edge pixels. We conducted a performance comparison with previous works. The existing edge-based moving-object detection algorithms pose some difficulty due to the changes in background motion, object shape, illumination variation, and noises. The result of the performance evaluation shows that the proposed algorithm can detect moving objects efficiently in real-world scenarios.

Using a Multi-Faced Technique SPFACS Video Object Design Analysis of The AAM Algorithm Applies Smile Detection (다면기법 SPFACS 영상객체를 이용한 AAM 알고리즘 적용 미소검출 설계 분석)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.99-112
    • /
    • 2015
  • Digital imaging technology has advanced beyond the limits of the multimedia industry IT convergence, and to develop a complex industry, particularly in the field of object recognition, face smart-phones associated with various Application technology are being actively researched. Recently, face recognition technology is evolving into an intelligent object recognition through image recognition technology, detection technology, the detection object recognition through image recognition processing techniques applied technology is applied to the IP camera through the 3D image object recognition technology Face Recognition been actively studied. In this paper, we first look at the essential human factor, technical factors and trends about the technology of the human object recognition based SPFACS(Smile Progress Facial Action Coding System)study measures the smile detection technology recognizes multi-faceted object recognition. Study Method: 1)Human cognitive skills necessary to analyze the 3D object imaging system was designed. 2)3D object recognition, face detection parameter identification and optimal measurement method using the AAM algorithm inside the proposals and 3)Face recognition objects (Face recognition Technology) to apply the result to the recognition of the person's teeth area detecting expression recognition demonstrated by the effect of extracting the feature points.

A Novel Approach for Object Detection in Illuminated and Occluded Video Sequences Using Visual Information with Object Feature Estimation

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.110-114
    • /
    • 2015
  • This paper reports a novel object-detection technique in video sequences. The proposed algorithm consists of detection of objects in illuminated and occluded videos by using object features and a neural network technique. It consists of two functional modules: region-based object feature extraction and continuous detection of objects in video sequences with region features. This scheme is proposed as an enhancement of the Lowe's scale-invariant feature transform (SIFT) object detection method. This technique solved the high computation time problem of feature generation in the SIFT method. The improvement is achieved by region-based feature classification in the objects to be detected; optimal neural network-based feature reduction is presented in order to reduce the object region feature dataset with winner pixel estimation between the video frames of the video sequence. Simulation results show that the proposed scheme achieves better overall performance than other object detection techniques, and region-based feature detection is faster in comparison to other recent techniques.

A Study on the Comparison of 2-D Circular Object Tracking Algorithm Using Vision System (비젼 시스템을 이용한 2-D 원형 물체 추적 알고리즘의 비교에 관한 연구)

  • Han, Kyu-Bum;Kim, Jung-Hoon;Baek, Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.125-131
    • /
    • 1999
  • In this paper, the algorithms which can track the two dimensional moving circular object using simple vision system are described. In order to track the moving object, the process of finding the object feature points - such as centroid of the object, corner points, area - is indispensable. With the assumption of two-dimensional circular moving object, the centroid of the circular object is computed from three points on the object circumference. Different kinds of algorithms for computing three edge points - simple x directional detection method, stick method. T-shape method are suggested. Through the computer simulation and experiments, three algorithms are compared from the viewpoint of detection accuracy and computational time efficiency.

  • PDF

A study of duck detection using deep neural network based on RetinaNet model in smart farming

  • Jeyoung Lee;Hochul Kang
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.846-858
    • /
    • 2024
  • In a duck cage, ducks are placed in various states. In particular, if a duck is overturned and falls or dies, it will adversely affect the growing environment. In order to prevent the foregoing, it was necessary to continuously manage the cage for duck growth. This study proposes a method using an object detection algorithm to improve the foregoing. Object detection refers to the work to perform classification and localization of all objects present in the image when an input image is given. To use an object detection algorithm in a duck cage, data to be used for learning should be made and the data should be augmented to secure enough data to learn from. In addition, the time required for object detection and the accuracy of object detection are important. The study collected, processed, and augmented image data for a total of two years in 2021 and 2022 from the duck cage. Based on the objects that must be detected, the data collected as such were divided at a ratio of 9 : 1, and learning and verification were performed. The final results were visually confirmed using images different from the images used for learning. The proposed method is expected to be used for minimizing human resources in the growing process in duck cages and making the duck cages into smart farms.

Vehicle Detection in Dense Area Using UAV Aerial Images (무인 항공기를 이용한 밀집영역 자동차 탐지)

  • Seo, Chang-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.693-698
    • /
    • 2018
  • This paper proposes a vehicle detection method for parking areas using unmanned aerial vehicles (UAVs) and using YOLOv2, which is a recent, known, fast, object-detection real-time algorithm. The YOLOv2 convolutional network algorithm can calculate the probability of each class in an entire image with a one-pass evaluation, and can also predict the location of bounding boxes. It has the advantage of very fast, easy, and optimized-at-detection performance, because the object detection process has a single network. The sliding windows methods and region-based convolutional neural network series detection algorithms use a lot of region proposals and take too much calculation time for each class. So these algorithms have a disadvantage in real-time applications. This research uses the YOLOv2 algorithm to overcome the disadvantage that previous algorithms have in real-time processing problems. Using Darknet, OpenCV, and the Compute Unified Device Architecture as open sources for object detection. a deep learning server is used for the learning and detecting process with each car. In the experiment results, the algorithm could detect cars in a dense area using UAVs, and reduced overhead for object detection. It could be applied in real time.