• Title/Summary/Keyword: Object-based image analysis(OBIA)

Search Result 7, Processing Time 0.019 seconds

Generation of Large-scale Map of Surface Sedimentary Facies in Intertidal Zone by Using UAV Data and Object-based Image Analysis (OBIA) (UAV 자료와 객체기반영상분석을 활용한 대축척 갯벌 표층 퇴적상 분류도 작성)

  • Kim, Kye-Lim;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.277-292
    • /
    • 2020
  • The purpose of this study is to propose the possibility of precise surface sedimentary facies classification and a more accurate classification method by generating the large-scale map of surface sedimentary facies based on UAV data and object-based image analysis (OBIA) for Hwang-do tidal flat in Cheonsu bay. The very high resolution UAV data extracted factors that affect the classification of surface sedimentary facies, such as RGB ortho imagery, Digital elevation model (DEM), and tidal channel density, and analyzed the principal components of surface sedimentary facies through statistical analysis methods. Based on principal components, input data to be used for classification of surface sedimentary facies were divided into three cases such as (1) visible band spectrum, (2) topographical elevation and tidal channel density, (3) visible band spectrum and topographical elevation, tidal channel density. The object-based image analysis classification method was applied to map the classification of surface sedimentary facies according to conditions of input data. The surface sedimentary facies could be classified into a total of six sedimentary facies following the folk classification criteria. In addition, the use of visible band spectrum, topographical elevation, and tidal channel density enabled the most effective classification of surface sedimentary facies with a total accuracy of 63.04% and the Kappa coefficient of 0.54.

Spatial Replicability Assessment of Land Cover Classification Using Unmanned Aerial Vehicle and Artificial Intelligence in Urban Area (무인항공기 및 인공지능을 활용한 도시지역 토지피복 분류 기법의 공간적 재현성 평가)

  • Geon-Ung, PARK;Bong-Geun, SONG;Kyung-Hun, PARK;Hung-Kyu, LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.63-80
    • /
    • 2022
  • As a technology to analyze and predict an issue has been developed by constructing real space into virtual space, it is becoming more important to acquire precise spatial information in complex cities. In this study, images were acquired using an unmanned aerial vehicle for urban area with complex landscapes, and land cover classification was performed object-based image analysis and semantic segmentation techniques, which were image classification technique suitable for high-resolution imagery. In addition, based on the imagery collected at the same time, the replicability of land cover classification of each artificial intelligence (AI) model was examined for areas that AI model did not learn. When the AI models are trained on the training site, the land cover classification accuracy is analyzed to be 89.3% for OBIA-RF, 85.0% for OBIA-DNN, and 95.3% for U-Net. When the AI models are applied to the replicability assessment site to evaluate replicability, the accuracy of OBIA-RF decreased by 7%, OBIA-DNN by 2.1% and U-Net by 2.3%. It is found that U-Net, which considers both morphological and spectroscopic characteristics, performs well in land cover classification accuracy and replicability evaluation. As precise spatial information becomes important, the results of this study are expected to contribute to urban environment research as a basic data generation method.

Optimal Parameter Analysis and Evaluation of Change Detection for SLIC-based Superpixel Techniques Using KOMPSAT Data (KOMPSAT 영상을 활용한 SLIC 계열 Superpixel 기법의 최적 파라미터 분석 및 변화 탐지 성능 비교)

  • Chung, Minkyung;Han, Youkyung;Choi, Jaewan;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1427-1443
    • /
    • 2018
  • Object-based image analysis (OBIA) allows higher computation efficiency and usability of information inherent in the image, as it reduces the complexity of the image while maintaining the image properties. Superpixel methods oversegment the image with a smaller image unit than an ordinary object segment and well preserve the edges of the image. SLIC (Simple linear iterative clustering) is known for outperforming the previous superpixel methods with high image segmentation quality. Although the input parameter for SLIC, number of superpixels has considerable influence on image segmentation results, impact analysis for SLIC parameter has not been investigated enough. In this study, we performed optimal parameter analysis and evaluation of change detection for SLIC-based superpixel techniques using KOMPSAT data. Forsuperpixel generation, three superpixel methods (SLIC; SLIC0, zero parameter version of SLIC; SNIC, simple non-iterative clustering) were used with superpixel sizes in ranges of $5{\times}5$ (pixels) to $50{\times}50$ (pixels). Then, the image segmentation results were analyzed for how well they preserve the edges of the change detection reference data. Based on the optimal parameter analysis, image segmentation boundaries were obtained from difference image of the bi-temporal images. Then, DBSCAN (Density-based spatial clustering of applications with noise) was applied to cluster the superpixels to a certain size of objects for change detection. The changes of features were detected for each superpixel and compared with reference data for evaluation. From the change detection results, it proved that better change detection can be achieved even with bigger superpixel size if the superpixels were generated with high regularity of size and shape.

Applicability of Geo-spatial Processing Open Sources to Geographic Object-based Image Analysis (GEOBIA)

  • Lee, Ki-Won;Kang, Sang-Goo
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.379-388
    • /
    • 2011
  • At present, GEOBIA (Geographic Object-based Image Analysis), heir of OBIA (Object-based Image Analysis), is regarded as an important methodology by object-oriented paradigm for remote sensing, dealing with geo-objects related to image segmentation and classification in the different view point of pixel-based processing. This also helps to directly link to GIS applications. Thus, GEOBIA software is on the booming. The main theme of this study is to look into the applicability of geo-spatial processing open source to GEOBIA. However, there is no few fully featured open source for GEOBIA which needs complicated schemes and algorithms, till It was carried out to implement a preliminary system for GEOBIA running an integrated and user-oriented environment. This work was performed by using various open sources such as OTB or PostgreSQL/PostGIS. Some points are different from the widely-used proprietary GEOBIA software. In this system, geo-objects are not file-based ones, but tightly linked with GIS layers in spatial database management system. The mean shift algorithm with parameters associated with spatial similarities or homogeneities is used for image segmentation. For classification process in this work, tree-based model of hierarchical network composing parent and child nodes is implemented by attribute join in the semi-automatic mode, unlike traditional image-based classification. Of course, this integrated GEOBIA system is on the progressing stage, and further works are necessary. It is expected that this approach helps to develop and to extend new applications such as urban mapping or change detection linked to GIS data sets using GEOBIA.

A Study on Object-Based Image Analysis Methods for Land Cover Classification in Agricultural Areas (농촌지역 토지피복분류를 위한 객체기반 영상분석기법 연구)

  • Kim, Hyun-Ok;Yeom, Jong-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.26-41
    • /
    • 2012
  • It is necessary to manage, forecast and prepare agricultural production based on accurate and up-to-date information in order to cope with the climate change and its impacts such as global warming, floods and droughts. This study examined the applicability as well as challenges of the object-based image analysis method for developing a land cover image classification algorithm, which can support the fast thematic mapping of wide agricultural areas on a regional scale. In order to test the applicability of RapidEye's multi-temporal spectral information for differentiating agricultural land cover types, the integration of other GIS data was minimized. Under this circumstance, the land cover classification accuracy at the study area of Kimje ($1300km^2$) was 80.3%. The geometric resolution of RapidEye, 6.5m showed the possibility to derive the spatial features of agricultural land use generally cultivated on a small scale in Korea. The object-based image analysis method can realize the expert knowledge in various ways during the classification process, so that the application of spectral image information can be optimized. An additional advantage is that the already developed classification algorithm can be stored, edited with variables in detail with regard to analytical purpose, and may be applied to other images as well as other regions. However, the segmentation process, which is fundamental for the object-based image classification, often cannot be explained quantitatively. Therefore, it is necessary to draw the best results based on expert's empirical and scientific knowledge.

Land Use Feature Extraction and Sprawl Development Prediction from Quickbird Satellite Imagery Using Dempster-Shafer and Land Transformation Model

  • Saharkhiz, Maryam Adel;Pradhan, Biswajeet;Rizeei, Hossein Mojaddadi;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • Accurate knowledge of land use/land cover (LULC) features and their relative changes over upon the time are essential for sustainable urban management. Urban sprawl growth has been always also a worldwide concern that needs to carefully monitor particularly in a developing country where unplanned building constriction has been expanding at a high rate. Recently, remotely sensed imageries with a very high spatial/spectral resolution and state of the art machine learning approaches sent the urban classification and growth monitoring to a higher level. In this research, we classified the Quickbird satellite imagery by object-based image analysis of Dempster-Shafer (OBIA-DS) for the years of 2002 and 2015 at Karbala-Iraq. The real LULC changes including, residential sprawl expansion, amongst these years, were identified via change detection procedure. In accordance with extracted features of LULC and detected trend of urban pattern, the future LULC dynamic was simulated by using land transformation model (LTM) in geospatial information system (GIS) platform. Both classification and prediction stages were successfully validated using ground control points (GCPs) through accuracy assessment metric of Kappa coefficient that indicated 0.87 and 0.91 for 2002 and 2015 classification as well as 0.79 for prediction part. Detail results revealed a substantial growth in building over fifteen years that mostly replaced by agriculture and orchard field. The prediction scenario of LULC sprawl development for 2030 revealed a substantial decline in green and agriculture land as well as an extensive increment in build-up area especially at the countryside of the city without following the residential pattern standard. The proposed method helps urban decision-makers to identify the detail temporal-spatial growth pattern of highly populated cities like Karbala. Additionally, the results of this study can be considered as a probable future map in order to design enough future social services and amenities for the local inhabitants.

Comparative Analysis of Evaluation Methods for Image Segmentation Results (영상분할 결과 평가 방법의 적용성 비교 분석)

  • Seo, Won-Woo;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.257-274
    • /
    • 2021
  • Although image segmentation is a critical part of object-based analysis of high resolution imagery, there has been lack of studies to evaluate the quality of image segmentation. In this study, we aimed to find practical and effective methods to obtain optimal parameters for image segmentation. Evaluations of image segmentation are divided into unsupervised, supervised, and qualitative visual interpretation methods. Using the multispectral UAV images, sampled from urban and forest over the Incheon Metropolitan City Park, three evaluation methods were compared. In overall, three methods showed very similar results regardless of the computational costs and applicability, although the optimal parameters determined by the evaluations were different between the urban and forest images. There is no single measure that outperforms in the unsupervised evaluation. Any combinations of intra-segment measures (V, COV, WV) and inter-segment measures (MI, BSH, DTNP) provided almost the same results. Although supervised method may be biased by subjective selection of reference data, it can be easily applied to detect object of interest. The qualitative visual interpretation on the segmentation results corresponded with the unsupervised and supervised evaluations.