• Title/Summary/Keyword: Object-based Image Classification

Search Result 246, Processing Time 0.026 seconds

A Hybrid Proposed Framework for Object Detection and Classification

  • Aamir, Muhammad;Pu, Yi-Fei;Rahman, Ziaur;Abro, Waheed Ahmed;Naeem, Hamad;Ullah, Farhan;Badr, Aymen Mudheher
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1176-1194
    • /
    • 2018
  • The object classification using the images' contents is a big challenge in computer vision. The superpixels' information can be used to detect and classify objects in an image based on locations. In this paper, we proposed a methodology to detect and classify the image's pixels' locations using enhanced bag of words (BOW). It calculates the initial positions of each segment of an image using superpixels and then ranks it according to the region score. Further, this information is used to extract local and global features using a hybrid approach of Scale Invariant Feature Transform (SIFT) and GIST, respectively. To enhance the classification accuracy, the feature fusion technique is applied to combine local and global features vectors through weight parameter. The support vector machine classifier is a supervised algorithm is used for classification in order to analyze the proposed methodology. The Pascal Visual Object Classes Challenge 2007 (VOC2007) dataset is used in the experiment to test the results. The proposed approach gave the results in high-quality class for independent objects' locations with a mean average best overlap (MABO) of 0.833 at 1,500 locations resulting in a better detection rate. The results are compared with previous approaches and it is proved that it gave the better classification results for the non-rigid classes.

Training Network Design Based on Convolution Neural Network for Object Classification in few class problem (소 부류 객체 분류를 위한 CNN기반 학습망 설계)

  • Lim, Su-chang;Kim, Seung-Hyun;Kim, Yeon-Ho;Kim, Do-yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.144-150
    • /
    • 2017
  • Recently, deep learning is used for intelligent processing and accuracy improvement of data. It is formed calculation model composed of multi data processing layer that train the data representation through an abstraction of the various levels. A category of deep learning, convolution neural network is utilized in various research fields, which are human pose estimation, face recognition, image classification, speech recognition. When using the deep layer and lots of class, CNN that show a good performance on image classification obtain higher classification rate but occur the overfitting problem, when using a few data. So, we design the training network based on convolution neural network and trained our image data set for object classification in few class problem. The experiment show the higher classification rate of 7.06% in average than the previous networks designed to classify the object in 1000 class problem.

Crops Classification Using Imagery of Unmanned Aerial Vehicle (UAV) (무인비행기 (UAV) 영상을 이용한 농작물 분류)

  • Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.91-97
    • /
    • 2015
  • The Unmanned Aerial Vehicles (UAVs) have several advantages over conventional RS techniques. They can acquire high-resolution images quickly and repeatedly. And with a comparatively lower flight altitude i.e. 80~400 m, they can obtain good quality images even in cloudy weather. Therefore, they are ideal for acquiring spatial data in cases of small agricultural field with mixed crop, abundant in South Korea. This paper discuss the use of low cost UAV based remote sensing for classifying crops. The study area, Gochang is produced by several crops such as red pepper, radish, Chinese cabbage, rubus coreanus, welsh onion, bean in South Korea. This study acquired images using fixed wing UAV on September 23, 2014. An object-based technique is used for classification of crops. The results showed that scale 250, shape 0.1, color 0.9, compactness 0.5 and smoothness 0.5 were the optimum parameter values in image segmentation. As a result, the kappa coefficient was 0.82 and the overall accuracy of classification was 85.0 %. The result of the present study validate our attempts for crop classification using high resolution UAV image as well as established the possibility of using such remote sensing techniques widely to resolve the difficulty of remote sensing data acquisition in agricultural sector.

Object/Non-object Image Classification Based on the Detection of Objects of Interest (관심 객체 검출에 기반한 객체 및 비객체 영상 분류 기법)

  • Kim Sung-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.25-33
    • /
    • 2006
  • We propose a method that automatically classifies the images into the object and non-object images. An object image is the image with object(s). An object in an image is defined as a set of regions that lie around center of the image and have significant color distribution against the other surround (or background) regions. We define four measures based on the characteristics of an object to classify the images. The center significance is calculated from the difference in color distribution between the center area and its surrounding region. Second measure is the variance of significantly correlated colors in the image plane. Significantly correlated colors are first defined as the colors of two adjacent pixels that appear more frequently around center of an image rather than at the background of the image. Third one is edge strength at the boundary of candidate for the object. By the way, it is computationally expensive to extract third value because central objects are extracted. So, we define fourth measure which is similar with third measure in characteristic. Fourth one can be calculated more fast but show less accuracy than third one. To classify the images we combine each measure by training the neural network and SYM. We compare classification accuracies of these two classifiers.

  • PDF

Splitting Rules using Intervals for Object Classification in Image Databases (이미지 데이터베이스에서 인터벌을 이용한 객체분류를 위한 분리 방법)

  • Cho, June-Suh;Choi, Joon-Soo
    • The KIPS Transactions:PartD
    • /
    • v.12D no.6 s.102
    • /
    • pp.829-836
    • /
    • 2005
  • The way to assign a splitting criterion for correct object classification is the main issue in all decisions trees. This paper describes new splitting rules for classification in order to find an optimal split point. Unlike the current splitting rules that are provided by searching all threshold values, this paper proposes the splitting rules that we based on the probabilities of pre assigned intervals. Our methodology provides that user can control the accuracy of tree by adjusting the number of intervals. In addition, we applied the proposed splitting rules to a set of image data that was retrieved by parameterized feature extraction to recognize image objects.

Generation of Large-scale Map of Surface Sedimentary Facies in Intertidal Zone by Using UAV Data and Object-based Image Analysis (OBIA) (UAV 자료와 객체기반영상분석을 활용한 대축척 갯벌 표층 퇴적상 분류도 작성)

  • Kim, Kye-Lim;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.277-292
    • /
    • 2020
  • The purpose of this study is to propose the possibility of precise surface sedimentary facies classification and a more accurate classification method by generating the large-scale map of surface sedimentary facies based on UAV data and object-based image analysis (OBIA) for Hwang-do tidal flat in Cheonsu bay. The very high resolution UAV data extracted factors that affect the classification of surface sedimentary facies, such as RGB ortho imagery, Digital elevation model (DEM), and tidal channel density, and analyzed the principal components of surface sedimentary facies through statistical analysis methods. Based on principal components, input data to be used for classification of surface sedimentary facies were divided into three cases such as (1) visible band spectrum, (2) topographical elevation and tidal channel density, (3) visible band spectrum and topographical elevation, tidal channel density. The object-based image analysis classification method was applied to map the classification of surface sedimentary facies according to conditions of input data. The surface sedimentary facies could be classified into a total of six sedimentary facies following the folk classification criteria. In addition, the use of visible band spectrum, topographical elevation, and tidal channel density enabled the most effective classification of surface sedimentary facies with a total accuracy of 63.04% and the Kappa coefficient of 0.54.

The study on the object recognition using Fuzzy Classification system based on Support Vector (서포트 벡터 기반 퍼지 분류 시스템을 이용한 물체 인식)

  • Kim, Sung-Jin;Won, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.167-170
    • /
    • 2003
  • 본 논문에서는 패턴 인식의 전형적인 경우인 보이기 기반 물체 인식(Appearance based object recognition)을 수행하기 위하여, 일반적인 퍼지 분류 모델과, 서포트 벡터 머신을 하이브리드(hybrid) 하게 연결한 서포트 벡터 기반 퍼지 분류 시스템이라는 새로운 방법을 제안하고 이에 대하여 연구한다. 일반적인 분류(classification)문제의 경우 두 클래스로 구분하는데 최적의 성능을 가지고 있는 서포트 벡터 머신이 다중클래스(Multiclass)의 경우 발생 하는 계산량의 증가 문제를 해 결하기 위하여 다중 클래스 분류(Multiclass classification)에 장점을 가진 퍼지 분류 시스템을 도입, 서포트 벡터 머신에 연결함으로써 단점을 보완하는 시스템을 제안한다. 즉 서포트 벡터 머신을 통해 퍼지 시스템의 구조를 러닝(learning)하는데 사용하여 최종 적으로는 퍼지 분류 시스템(Fuzzy Classifier)이 나오도록 하는 것이다. 이 시스템의 성능을 확인하고자 여러 가지 물체들에 대한 이미지를 가지고 있는 COIL(Columbia Object Image Library) 데이터 베이스를 사용하여 보이기 기반 물체 인식(Appearance based Object Recognition)을 수행 하였으며 이를 순수한 서포트 벡터 머신만을 이용하여 물체 인식을 수행한 경우와 정확도 및 인식 시간에 대하여 비교하였다.

  • PDF

Development of a Deep Learning Algorithm for Small Object Detection in Real-Time (실시간 기반 매우 작은 객체 탐지를 위한 딥러닝 알고리즘 개발)

  • Wooseong Yeo;Meeyoung Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_2
    • /
    • pp.1001-1007
    • /
    • 2024
  • Recent deep learning algorithms for object detection in real-time play a crucial role in various applications such as autonomous driving, traffic monitoring, health care, and water quality monitoring. The size of small objects, in particular, significantly impacts the accuracy of detection models. However, data containing small objects can lead to underfitting issues in models. Therefore, this study developed a deep learning model capable of quickly detecting small objects to provide more accurate predictions. The RE-SOD (Residual block based Small Object Detector) developed in this research enhances the detection performance for small objects by using RGB separation preprocessing and residual blocks. The model achieved an accuracy of 1.0 in image classification and an mAP50-95 score of 0.944 in object detection. The performance of this model was validated by comparing it with real-time detection models such as YOLOv5, YOLOv7, and YOLOv8.

A Study on the Classification Model of Minhwa Genre Based on Deep Learning (딥러닝 기반 민화 장르 분류 모델 연구)

  • Yoon, Soorim;Lee, Young-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1524-1534
    • /
    • 2022
  • This study proposes the classification model of Minhwa genre based on object detection of deep learning. To detect unique Korean traditional objects in Minhwa, we construct custom datasets by labeling images using object keywords in Minhwa DB. We train YOLOv5 models with custom datasets, and classify images using predicted object labels result, the output of model training. The algorithm consists of two classification steps: 1) according to the painting technique and 2) genre of Minhwa. Through classifying paintings using this algorithm on the Internet, it is expected that the correct information of Minhwa can be built and provided to users forward.

Detection of Settlement Areas from Object-Oriented Classification using Speckle Divergence of High-Resolution SAR Image (고해상도 SAR 위성영상의 스페클 divergence와 객체기반 영상분류를 이용한 주거지역 추출)

  • Song, Yeong Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.79-90
    • /
    • 2017
  • Urban environment represent one of the most dynamic regions on earth. As in other countries, forests, green areas, agricultural lands are rapidly changing into residential or industrial areas in South Korea. Monitoring such rapid changes in land use requires rapid data acquisition, and satellite imagery can be an effective method to this demand. In general, SAR(Synthetic Aperture Radar) satellites acquire images with an active system, so the brightness of the image is determined by the surface roughness. Therefore, the water areas appears dark due to low reflection intensity, In the residential area where the artificial structures are distributed, the brightness value is higher than other areas due to the strong reflection intensity. If we use these characteristics of SAR images, settlement areas can be extracted efficiently. In this study, extraction of settlement areas was performed using TerraSAR-X of German high-resolution X-band SAR satellite and KOMPSAT-5 of South Korea, and object-oriented image classification method using the image segmentation technique is applied for extraction. In addition, to improve the accuracy of image segmentation, the speckle divergence was first calculated to adjust the reflection intensity of settlement areas. In order to evaluate the accuracy of the two satellite images, settlement areas are classified by applying a pixel-based K-means image classification method. As a result, in the case of TerraSAR-X, the accuracy of the object-oriented image classification technique was 88.5%, that of the pixel-based image classification was 75.9%, and that of KOMPSAT-5 was 87.3% and 74.4%, respectively.