• Title/Summary/Keyword: Object-based Image Classification

Search Result 242, Processing Time 0.028 seconds

Object oriented classification using Landsat images

  • Yoon, Geun-Won;Cho, Seong-Ik;Jeong, Soo;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.204-206
    • /
    • 2003
  • In order to utilize remote sensed images effectively, a lot of image classification methods are suggested for many years. But, the accuracy of traditional methods based on pixel-based classification is not high in general. In this study, object oriented classification based on image segmentation is used to classify Landsat images. A necessary prerequisite for object oriented image classification is successful image segmentation. Object oriented image classification, which is based on fuzzy logic, allows the integration of a broad spectrum of different object features, such as spectral values , shape and texture. Landsat images are divided into urban, agriculture, forest, grassland, wetland, barren and water in sochon-gun, Chungcheongnam-do using object oriented classification algorithms in this paper. Preliminary results will help to perform an automatic image classification in the future.

  • PDF

Semantic Image Segmentation Combining Image-level and Pixel-level Classification (영상수준과 픽셀수준 분류를 결합한 영상 의미분할)

  • Kim, Seon Kuk;Lee, Chil Woo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1425-1430
    • /
    • 2018
  • In this paper, we propose a CNN based deep learning algorithm for semantic segmentation of images. In order to improve the accuracy of semantic segmentation, we combined pixel level object classification and image level object classification. The image level object classification is used to accurately detect the characteristics of an image, and the pixel level object classification is used to indicate which object area is included in each pixel. The proposed network structure consists of three parts in total. A part for extracting the features of the image, a part for outputting the final result in the resolution size of the original image, and a part for performing the image level object classification. Loss functions exist for image level and pixel level classification, respectively. Image-level object classification uses KL-Divergence and pixel level object classification uses cross-entropy. In addition, it combines the layer of the resolution of the network extracting the features and the network of the resolution to secure the position information of the lost feature and the information of the boundary of the object due to the pooling operation.

Classification of Man-Made and Natural Object Images in Color Images

  • Park, Chang-Min;Gu, Kyung-Mo;Kim, Sung-Young;Kim, Min-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1657-1664
    • /
    • 2004
  • We propose a method that classifies images into two object types man-made and natural objects. A central object is extracted from each image by using central object extraction method[1] before classification. A central object in an images defined as a set of regions that lies around center of the image and has significant color distribution against its surrounding. We define three measures to classify the object images. The first measure is energy of edge direction histogram. The energy is calculated based on the direction of only non-circular edges. The second measure is an energy difference along directions in Gabor filter dictionary. Maximum and minimum energy along directions in Gabor filter dictionary are selected and the energy difference is computed as the ratio of the maximum to the minimum value. The last one is a shape of an object, which is also represented by Gabor filter dictionary. Gabor filter dictionary for the shape of an object differs from the one for the texture in an object in which the former is computed from a binarized object image. Each measure is combined by using majority rule tin which decisions are made by the majority. A test with 600 images shows a classification accuracy of 86%.

  • PDF

Object-oriented Classification of Urban Areas Using Lidar and Aerial Images

  • Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.173-179
    • /
    • 2015
  • In this paper, object-based classification of urban areas based on a combination of information from lidar and aerial images is introduced. High resolution images are frequently used in automatic classification, making use of the spectral characteristics of the features under study. However, in urban areas, pixel-based classification can be difficult since building colors differ and the shadows of buildings can obscure building segmentation. Therefore, if the boundaries of buildings can be extracted from lidar, this information could improve the accuracy of urban area classifications. In the data processing stage, lidar data and the aerial image are co-registered into the same coordinate system, and a local maxima filter is used for the building segmentation of lidar data, which are then converted into an image containing only building information. Then, multiresolution segmentation is achieved using a scale parameter, and a color and shape factor; a compactness factor and a layer weight are implemented for the classification using a class hierarchy. Results indicate that lidar can provide useful additional data when combined with high resolution images in the object-oriented hierarchical classification of urban areas.

Semantic Cue based Image Classification using Object Salient Point Modeling (객체 특징점 모델링을 이용한 시멘틱 단서 기반 영상 분류)

  • Park, Sang-Hyuk;Byun, Hye-Ran
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.85-89
    • /
    • 2010
  • Most images are composed as union of the various objects which can describe meaning respectively. Unlike human perception, The general computer systems used for image processing analyze images based on low level features like color, texture and shape. The semantic gap between low level image features and the richness of user semantic knowledges can bring about unsatisfactory classification results from user expectation. In order to deal with this problem, we propose a semantic cue based image classification method using salient points from object of interest. Salient points are used to extract low level features from images and to link high level semantic concepts, and they represent distinct semantic information. The proposed algorithm can reduce semantic gap using salient points modeling which are used for image classification like human perception. and also it can improve classification accuracy of natural images according to their semantic concept relative to certain object information by using salient points. The experimental result shows both a high efficiency of the proposed methods and a good performance.

Classification Strategies for High Resolution Images of Korean Forests: A Case Study of Namhansansung Provincial Park, Korea

  • Park, Chong-Hwa;Choi, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.708-708
    • /
    • 2002
  • Recent developments in sensor technologies have provided remotely sensed data with very high spatial resolution. In order to fully utilize the potential of high resolution images, new image classification strategies are necessary. Unfortunately, the high resolution images increase the spectral within-field variability, and the classification accuracy of traditional methods based on pixel-based classification algorithms such as Maximum-Likelihood method may be decreased (Schiewe 2001). Recent development in Object Oriented Classification based on image segmentation algorithms can be used for the classification of forest patches on rugged terrain of Korea. The objectives of this paper are as follows. First, to compare the pros and cons of image classification methods based on pixel-based and object oriented classification algorithm for the forest patch classification. Landsat ETM+ data and IKONOS data will be used for the classification. Second, to investigate ways to increase classification accuracy of forest patches. Supplemental data such as DTM and Forest Type Map of 1:25,000 scale are used for topographic correction and image segmentation. Third, to propose the best classification strategy for forest patch classification in terms of accuracy and data requirement. The research site for this paper is Namhansansung Provincial Park located at the eastern suburb of Seoul Metropolitan City for its diverse forest patch types and data availability. Both Landsat ETM+ and IKONOS data are used for the classification. Preliminary results can be summarized as follows. First, topographic correction of reflectance is essential for the classification of forest patches on rugged terrain. Second, object oriented classification of IKONOS data enables higher classification accuracy compared to Landsat ETM+ and pixel-based classification. Third, multi-stage segmentation is very useful to investigate landscape ecological aspect of forest communities of Korea.

  • PDF

A Study on the Object-based Classification Method for Wildfire Fuel Type Map (산불연료지도 제작을 위한 객체기반 분류 방법 연구)

  • Yoon, Yeo-Sang;Kim, Youn-Soo;Kim, Yong-Seung
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.213-221
    • /
    • 2007
  • This paper showed how to analysis the object-based classification for wildfire fuel type map using Hyperion hyperspectral remote sensing data acquired in April, 2002 and compared the results of the object-based classification with the results of the pixel-based classification. Our methodological approach for wildfire fuel type map firstly processed correcting abnormal pixels and atypical bands and also calibrating atmospheric noise for enhanced image quality. Fuel type map is characterized by the results of the spectral mixture analysis(SMA). Object-based approach was based on segment-based endmember selection, while pixel-based method used standard SMA. To validate and compare, we used true-color high resolution orthoimagery.

  • PDF

Object-oriented Information Extraction and Application in High-resolution Remote Sensing Image

  • WEI Wenxia;Ma Ainai;Chen Xunwan
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.125-127
    • /
    • 2004
  • High-resolution satellite images offer abundance information of the earth surface for remote sensing applications. The information includes geometry, texture and attribute characteristic. The pixel-based image classification can't satisfy high-resolution satellite image's classification precision and produce large data redundancy. Object-oriented information extraction not only depends on spectrum character, but also use geometry and structure information. It can provide an accessible and truly revolutionary approach. Using Beijing Spot 5 high-resolution image and object-oriented classification with the eCognition software, we accomplish the cultures' precise classification. The test areas have five culture types including water, vegetation, road, building and bare lands. We use nearest neighbor classification and appraise the overall classification accuracy. The average of five species reaches 0.90. All of maximum is 1. The standard deviation is less than 0.11. The overall accuracy can reach $95.47\%.$ This method offers a new technology for high-resolution satellite images' available applications in remote sensing culture classification.

  • PDF

Object Classification Method using Hilbert Scanning Distance (힐버트 스캔 거리값을 이용한 물체식별 알고리즘)

  • Choi, Jeong-Hwan;Baek, Young-Min;Choi, Jin-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.700-705
    • /
    • 2008
  • In this paper, we propose object classification algorithm for real-time surveillance system. We have approached this problem using silhouette-based template matching. The silhouette of the object is extracted, and then it is compared with representative template models. Template models are previously stored in the database. Our algorithm is similar to previous pixel-based template matching scheme like Hausdorff Distance, but we use 1D image array rather than 2D regions inspired by Hilbert Path. Transformation of images could reduce computational burden to compute similarity between the detected image and the template images. Experimental results show robustness and real-time performance in object classification, even in low resolution images.

Object-based Image Classification by Integrating Multiple Classes in Hue Channel Images (Hue 채널 영상의 다중 클래스 결합을 이용한 객체 기반 영상 분류)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.2011-2025
    • /
    • 2021
  • In high-resolution satellite image classification, when the color values of pixels belonging to one class are different, such as buildings with various colors, it is difficult to determine the color information representing the class. In this paper, to solve the problem of determining the representative color information of a class, we propose a method to divide the color channel of HSV (Hue Saturation Value) and perform object-based classification. To this end, after transforming the input image of the RGB color space into the components of the HSV color space, the Hue component is divided into subchannels at regular intervals. The minimum distance-based image classification is performed for each hue subchannel, and the classification result is combined with the image segmentation result. As a result of applying the proposed method to KOMPSAT-3A imagery, the overall accuracy was 84.97% and the kappa coefficient was 77.56%, and the classification accuracy was improved by more than 10% compared to a commercial software.