• Title/Summary/Keyword: Object-based Classification

Search Result 504, Processing Time 0.023 seconds

A Content-Based Image Classification using Neural Network (신경망을 이용한 내용기반 영상 분류)

  • 이재원;김상균
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.505-514
    • /
    • 2002
  • In this Paper, we propose a method of content-based image classification using neural network. The images for classification ate object images that can be divided into foreground and background. To deal with the object images efficiently, object region is extracted with a region segmentation technique in the preprocessing step. Features for the classification are texture and shape features extracted from wavelet transformed image. The neural network classifier is constructed with the extracted features and the back-propagation learning algorithm. Among the various texture features, the diagonal moment was more effective. A test with 300 training data and 300 test data composed of 10 images from each of 30 classes shows correct classification rates of 72.3% and 67%, respectively.

  • PDF

Semantic Cue based Image Classification using Object Salient Point Modeling (객체 특징점 모델링을 이용한 시멘틱 단서 기반 영상 분류)

  • Park, Sang-Hyuk;Byun, Hye-Ran
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.85-89
    • /
    • 2010
  • Most images are composed as union of the various objects which can describe meaning respectively. Unlike human perception, The general computer systems used for image processing analyze images based on low level features like color, texture and shape. The semantic gap between low level image features and the richness of user semantic knowledges can bring about unsatisfactory classification results from user expectation. In order to deal with this problem, we propose a semantic cue based image classification method using salient points from object of interest. Salient points are used to extract low level features from images and to link high level semantic concepts, and they represent distinct semantic information. The proposed algorithm can reduce semantic gap using salient points modeling which are used for image classification like human perception. and also it can improve classification accuracy of natural images according to their semantic concept relative to certain object information by using salient points. The experimental result shows both a high efficiency of the proposed methods and a good performance.

A Study on the Classification Model of Minhwa Genre Based on Deep Learning (딥러닝 기반 민화 장르 분류 모델 연구)

  • Yoon, Soorim;Lee, Young-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1524-1534
    • /
    • 2022
  • This study proposes the classification model of Minhwa genre based on object detection of deep learning. To detect unique Korean traditional objects in Minhwa, we construct custom datasets by labeling images using object keywords in Minhwa DB. We train YOLOv5 models with custom datasets, and classify images using predicted object labels result, the output of model training. The algorithm consists of two classification steps: 1) according to the painting technique and 2) genre of Minhwa. Through classifying paintings using this algorithm on the Internet, it is expected that the correct information of Minhwa can be built and provided to users forward.

Development of Deep Learning-based Automatic Classification of Architectural Objects in Point Clouds for BIM Application in Renovating Aging Buildings (딥러닝 기반 노후 건축물 리모델링 시 BIM 적용을 위한 포인트 클라우드의 건축 객체 자동 분류 기술 개발)

  • Kim, Tae-Hoon;Gu, Hyeong-Mo;Hong, Soon-Min;Choo, Seoung-Yeon
    • Journal of KIBIM
    • /
    • v.13 no.4
    • /
    • pp.96-105
    • /
    • 2023
  • This study focuses on developing a building object recognition technology for efficient use in the remodeling of buildings constructed without drawings. In the era of the 4th industrial revolution, smart technologies are being developed. This research contributes to the architectural field by introducing a deep learning-based method for automatic object classification and recognition, utilizing point cloud data. We use a TD3D network with voxels, optimizing its performance through adjustments in voxel size and number of blocks. This technology enables the classification of building objects such as walls, floors, and roofs from 3D scanning data, labeling them in polygonal forms to minimize boundary ambiguities. However, challenges in object boundary classifications were observed. The model facilitates the automatic classification of non-building objects, thereby reducing manual effort in data matching processes. It also distinguishes between elements to be demolished or retained during remodeling. The study minimized data set loss space by labeling using the extremities of the x, y, and z coordinates. The research aims to enhance the efficiency of building object classification and improve the quality of architectural plans by reducing manpower and time during remodeling. The study aligns with its goal of developing an efficient classification technology. Future work can extend to creating classified objects using parametric tools with polygon-labeled datasets, offering meaningful numerical analysis for remodeling processes. Continued research in this direction is anticipated to significantly advance the efficiency of building remodeling techniques.

Object-oriented Information Extraction and Application in High-resolution Remote Sensing Image

  • WEI Wenxia;Ma Ainai;Chen Xunwan
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.125-127
    • /
    • 2004
  • High-resolution satellite images offer abundance information of the earth surface for remote sensing applications. The information includes geometry, texture and attribute characteristic. The pixel-based image classification can't satisfy high-resolution satellite image's classification precision and produce large data redundancy. Object-oriented information extraction not only depends on spectrum character, but also use geometry and structure information. It can provide an accessible and truly revolutionary approach. Using Beijing Spot 5 high-resolution image and object-oriented classification with the eCognition software, we accomplish the cultures' precise classification. The test areas have five culture types including water, vegetation, road, building and bare lands. We use nearest neighbor classification and appraise the overall classification accuracy. The average of five species reaches 0.90. All of maximum is 1. The standard deviation is less than 0.11. The overall accuracy can reach $95.47\%.$ This method offers a new technology for high-resolution satellite images' available applications in remote sensing culture classification.

  • PDF

Detection of Trees with Pine Wilt Disease Using Object-based Classification Method

  • Park, Jeongmook;Sim, Woodam;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.4
    • /
    • pp.384-391
    • /
    • 2016
  • In this study, regions infected by pine wilt disease were extracted by using object-based classification method (OB-infected region), and the characteristics of special distribution about OB-infected region were figured out. Scale 24, Shape 0.1, Color 0.9, Compactness 0.5, and Smoothness 0.5 was selected as the objected-based, optimal weighted value of OB-infected region classification. The total accuracy of classification was high with 99% and Kappa coefficient was also high with 0.97. The area of OB-infected region was approximately 90 ha, 16% of the total area. The OB-infected region in Age class V and VI was intensively distributed with 97% of the total. Also, The OB-infected region in Middle and Large DBH class was intensively distributed with 99% of the total. In terms of the topographic characteristics of OB-infected region, the damages occurred approximately 86% below the altitude of 200 m, and occurred 91% with a slope less than 10 degree. The damage occurred a lot in low hilly mountain and undulating slope. In addition, the accessibility to road and residential area from OB-infected region was less than 300 m in large part. Overall, it was figured out that artificial effect is stronger than natural effect with regard to the spread of pine wilt disease.

Automatic Document Classification Based on k-NN Classifier and Object-Based Thesaurus (k-NN 분류 알고리즘과 객체 기반 시소러스를 이용한 자동 문서 분류)

  • Bang Sun-Iee;Yang Jae-Dong;Yang Hyung-Jeong
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1204-1217
    • /
    • 2004
  • Numerous statistical and machine learning techniques have been studied for automatic text classification. However, because they train the classifiers using only feature vectors of documents, ambiguity between two possible categories significantly degrades precision of classification. To remedy the drawback, we propose a new method which incorporates relationship information of categories into extant classifiers. In this paper, we first perform the document classification using the k-NN classifier which is generally known for relatively good performance in spite of its simplicity. We employ the relationship information from an object-based thesaurus to reduce the ambiguity. By referencing various relationships in the thesaurus corresponding to the structured categories, the precision of k-NN classification is drastically improved, removing the ambiguity. Experiment result shows that this method achieves the precision up to 13.86% over the k-NN classification, preserving its recall.

A Study on Object-Based Image Analysis Methods for Land Cover Classification in Agricultural Areas (농촌지역 토지피복분류를 위한 객체기반 영상분석기법 연구)

  • Kim, Hyun-Ok;Yeom, Jong-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.26-41
    • /
    • 2012
  • It is necessary to manage, forecast and prepare agricultural production based on accurate and up-to-date information in order to cope with the climate change and its impacts such as global warming, floods and droughts. This study examined the applicability as well as challenges of the object-based image analysis method for developing a land cover image classification algorithm, which can support the fast thematic mapping of wide agricultural areas on a regional scale. In order to test the applicability of RapidEye's multi-temporal spectral information for differentiating agricultural land cover types, the integration of other GIS data was minimized. Under this circumstance, the land cover classification accuracy at the study area of Kimje ($1300km^2$) was 80.3%. The geometric resolution of RapidEye, 6.5m showed the possibility to derive the spatial features of agricultural land use generally cultivated on a small scale in Korea. The object-based image analysis method can realize the expert knowledge in various ways during the classification process, so that the application of spectral image information can be optimized. An additional advantage is that the already developed classification algorithm can be stored, edited with variables in detail with regard to analytical purpose, and may be applied to other images as well as other regions. However, the segmentation process, which is fundamental for the object-based image classification, often cannot be explained quantitatively. Therefore, it is necessary to draw the best results based on expert's empirical and scientific knowledge.

A Study on Deep Learning Model-based Object Classification for Big Data Environment

  • Kim, Jeong-Sig;Kim, Jinhong
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.1
    • /
    • pp.59-66
    • /
    • 2021
  • Recently, conceptual information model is changing fast, and these changes are coming about as a result of individual tendency, social cultural, new circumstances and societal shifts within big data environment. Despite the data is growing more and more, now is the time to commit ourselves to the development of renewable, invaluable information of social/live commerce. Because we have problems with various insoluble data, we propose about deep learning prediction model-based object classification in social commerce of big data environment. Accordingly, it is an increased need of social commerce platform capable of handling high volumes of multiple items by users. Consequently, responding to rapid changes in users is a very significant by deep learning. Namely, promptly meet the needs of the times, and a widespread growth in big data environment with the goal of realizing in this paper.

A Development of Unified and Consistent BIM Database for Integrated Use of BIM-based Quantities, Process, and Construction Costs in Civil Engineering

  • Lee, Jae-Hong;Lee, Sung-Woo;Kim, Tae-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • In this study, we have developed a calculation system for BIM-based quantities, 4D process, and 5D construction costs, by integrating object shape attributes and the standard classification system which consist of Cost Breakdown System(CBS), Object Breakdown System(OBS) and Work Breakdown System(WBS) in order to use for the 4 dimensional process control of roads and rivers. First, a new BIM library database connected with the BIM library shape objects was built according to the CBS/OBS/WBS standard classification system of the civil engineering field, and a integrated database system of BIM-based quantities, process(4D), and construction costs(5D) for roads and rivers was constructed. Nextly, the process classification system and the cost classification system were automatically disassembled to the BIM objects consisting of the Revit-family style elements. Finally, we added functions for automatically generating four dimensional activities and generating a automatic cost statement according to the combination of WBS and CBS classification system The ultimate goal of this study was to extend the integrated quantities, process(4D), and construction costs(5D) system for new roads and rivers, enabling the integrated use of process(4D) and construction costs(5D) in the design and construction stage, based on the tasks described above.