• 제목/요약/키워드: Object-Based Classification

검색결과 504건 처리시간 0.029초

Object oriented classification using Landsat images

  • Yoon, Geun-Won;Cho, Seong-Ik;Jeong, Soo;Park, Jong-Hyun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.204-206
    • /
    • 2003
  • In order to utilize remote sensed images effectively, a lot of image classification methods are suggested for many years. But, the accuracy of traditional methods based on pixel-based classification is not high in general. In this study, object oriented classification based on image segmentation is used to classify Landsat images. A necessary prerequisite for object oriented image classification is successful image segmentation. Object oriented image classification, which is based on fuzzy logic, allows the integration of a broad spectrum of different object features, such as spectral values , shape and texture. Landsat images are divided into urban, agriculture, forest, grassland, wetland, barren and water in sochon-gun, Chungcheongnam-do using object oriented classification algorithms in this paper. Preliminary results will help to perform an automatic image classification in the future.

  • PDF

Object-oriented Classification and QuickBird Multi-spectral Imagery in Forest Density Mapping

  • Jayakumar, S.;Ramachandran, A.;Lee, Jung-Bin;Heo, Joon
    • 대한원격탐사학회지
    • /
    • 제23권3호
    • /
    • pp.153-160
    • /
    • 2007
  • Forest cover density studies using high resolution satellite data and object oriented classification are limited in India. This article focuses on the potential use of QuickBird satellite data and object oriented classification in forest density mapping. In this study, the high-resolution satellite data was classified based on NDVI/pixel based and object oriented classification methods and results were compared. The QuickBird satellite data was found to be suitable in forest density mapping. Object oriented classification was superior than the NDVI/pixel based classification. The Object oriented classification method classified all the density classes of forest (dense, open, degraded and bare soil) with higher producer and user accuracies and with more kappa statistics value compared to pixel based method. The overall classification accuracy and Kappa statistics values of the object oriented classification were 83.33% and 0.77 respectively, which were higher than the pixel based classification (68%, 0.56 respectively). According to the Z statistics, the results of these two classifications were significantly different at 95% confidence level.

Object Classification based on Weakly Supervised E2LSH and Saliency map Weighting

  • Zhao, Yongwei;Li, Bicheng;Liu, Xin;Ke, Shengcai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권1호
    • /
    • pp.364-380
    • /
    • 2016
  • The most popular approach in object classification is based on the bag of visual-words model, which has several fundamental problems that restricting the performance of this method, such as low time efficiency, the synonym and polysemy of visual words, and the lack of spatial information between visual words. In view of this, an object classification based on weakly supervised E2LSH and saliency map weighting is proposed. Firstly, E2LSH (Exact Euclidean Locality Sensitive Hashing) is employed to generate a group of weakly randomized visual dictionary by clustering SIFT features of the training dataset, and the selecting process of hash functions is effectively supervised inspired by the random forest ideas to reduce the randomcity of E2LSH. Secondly, graph-based visual saliency (GBVS) algorithm is applied to detect the saliency map of different images and weight the visual words according to the saliency prior. Finally, saliency map weighted visual language model is carried out to accomplish object classification. Experimental results datasets of Pascal 2007 and Caltech-256 indicate that the distinguishability of objects is effectively improved and our method is superior to the state-of-the-art object classification methods.

UAV와 객체기반 영상분석 기법을 활용한 토지피복 분류 - 충청남도 서천군 마서면 일원을 대상으로 - (Land Cover Classification Using UAV Imagery and Object-Based Image Analysis - Focusing on the Maseo-myeon, Seocheon-gun, Chungcheongnam-do -)

  • 문호경;이선미;차재규
    • 한국지리정보학회지
    • /
    • 제20권1호
    • /
    • pp.1-14
    • /
    • 2017
  • 토지피복도는 지역의 현황을 파악하는 기초적 자료이지만 시간적 공간적 해상도의 한계로 인하여 생태 연구 분야에서의 활용성은 떨어지는 측면이 있다. 이에 본 연구에서는 UAV으로 취득된 고해상도 영상을 기반으로 토지피복도 제작과 자료의 활용가능성을 알아보고자 하였다. UAV를 이용하여 연구대상지 $2.5km^2$ 범위에서 10.5cm 정사영상을 취득하였으며 객체기반(Object-based)과 화소기반(pixel-based) 분류를 통해 얻어진 토지피복도를 비교 분석하였다. 정확도 검증 결과 화소기반 분류는 Kappa 0.77, 객체기반 분류는 Kappa 0.82로 분류정확도가 높았으며, 전반적인 면적비율은 유사하지만 초지, 습지 지역에서 양호한 분류 결과가 나타났다. 객체기반 분류를 위한 최적의 영상분할 가중치는 Scale150, Shape 0.5, Compactness 0.5, Color 1로 선정하였으며 가중치 선정과정에서 Scale이 가장 큰 영향을 주었다. 화소기반 분류 결과와 비교해 객체간의 명확한 경계를 가지므로 결과물 판독이 용이한 것으로 나타났으며, 환경부 토지피복도(세분류)와 비교하여 개발지역(도로, 건물 등)을 제외한 자연지역(산림, 초지, 습지 등)의 분류에 효과적이었다. UAV 영상을 활용한 토지피복 분류방법으로서 객체기반 분류기법의 적용은 자료의 최신성, 정확성, 경제성 등의 장점으로 생태 연구 분야에 기여할 수 있을 것으로 판단된다.

딥러닝 기반 객체 분류 및 검출 기술 분석 및 동향 (Technology Trends and Analysis of Deep Learning Based Object Classification and Detection)

  • 이승재;이근동;이수웅;고종국;유원영
    • 전자통신동향분석
    • /
    • 제33권4호
    • /
    • pp.33-42
    • /
    • 2018
  • Object classification and detection are fundamental technologies in computer vision and its applications. Recently, a deep-learning based approach has shown significant improvement in terms of object classification and detection. This report reviews the progress of deep-learning based object classification and detection in views of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), and analyzes recent trends of object classification and detection technology and its applications.

산불연료지도 제작을 위한 객체기반 분류 방법 연구 (A Study on the Object-based Classification Method for Wildfire Fuel Type Map)

  • 윤여상;김윤수;김용승
    • 항공우주기술
    • /
    • 제6권1호
    • /
    • pp.213-221
    • /
    • 2007
  • 본 연구에서는 2002년 4월에 획득된 Hyperion 초분광 원격탐사 자료를 이용하여 산불연료지도 제작을 위한 객체기반 분류 기법을 제시하였으며, 또한 객체기반 분석결과와 화소기반 분석결과를 비교해 보았다. 이를 위해 우선적으로 Hyperion 위성영상에 있는 잡음 화소 보정과 잡음 밴드를 제거하였으며, 또한 정확한 자료 처리를 위해 대기보정을 수행하였다. 산불 연료 지도 제작을 위한 방법은 분광혼합분석(SMA) 처리 결과를 재구성하여 얻었다. 객체 기반 접근 방법은 세그먼트 기반의 endmember 선택방법을 활용하였으며, 화소기반 분석은 표준 분광혼합분석기법을 적용하였다. 검증 및 비교를 위해서는 고해상도 칼라 항공정사영상이 활용되었다.

  • PDF

영상수준과 픽셀수준 분류를 결합한 영상 의미분할 (Semantic Image Segmentation Combining Image-level and Pixel-level Classification)

  • 김선국;이칠우
    • 한국멀티미디어학회논문지
    • /
    • 제21권12호
    • /
    • pp.1425-1430
    • /
    • 2018
  • In this paper, we propose a CNN based deep learning algorithm for semantic segmentation of images. In order to improve the accuracy of semantic segmentation, we combined pixel level object classification and image level object classification. The image level object classification is used to accurately detect the characteristics of an image, and the pixel level object classification is used to indicate which object area is included in each pixel. The proposed network structure consists of three parts in total. A part for extracting the features of the image, a part for outputting the final result in the resolution size of the original image, and a part for performing the image level object classification. Loss functions exist for image level and pixel level classification, respectively. Image-level object classification uses KL-Divergence and pixel level object classification uses cross-entropy. In addition, it combines the layer of the resolution of the network extracting the features and the network of the resolution to secure the position information of the lost feature and the information of the boundary of the object due to the pooling operation.

Classification of Man-Made and Natural Object Images in Color Images

  • Park, Chang-Min;Gu, Kyung-Mo;Kim, Sung-Young;Kim, Min-Hwan
    • 한국멀티미디어학회논문지
    • /
    • 제7권12호
    • /
    • pp.1657-1664
    • /
    • 2004
  • We propose a method that classifies images into two object types man-made and natural objects. A central object is extracted from each image by using central object extraction method[1] before classification. A central object in an images defined as a set of regions that lies around center of the image and has significant color distribution against its surrounding. We define three measures to classify the object images. The first measure is energy of edge direction histogram. The energy is calculated based on the direction of only non-circular edges. The second measure is an energy difference along directions in Gabor filter dictionary. Maximum and minimum energy along directions in Gabor filter dictionary are selected and the energy difference is computed as the ratio of the maximum to the minimum value. The last one is a shape of an object, which is also represented by Gabor filter dictionary. Gabor filter dictionary for the shape of an object differs from the one for the texture in an object in which the former is computed from a binarized object image. Each measure is combined by using majority rule tin which decisions are made by the majority. A test with 600 images shows a classification accuracy of 86%.

  • PDF

Object-oriented Classification of Urban Areas Using Lidar and Aerial Images

  • Lee, Won Hee
    • 한국측량학회지
    • /
    • 제33권3호
    • /
    • pp.173-179
    • /
    • 2015
  • In this paper, object-based classification of urban areas based on a combination of information from lidar and aerial images is introduced. High resolution images are frequently used in automatic classification, making use of the spectral characteristics of the features under study. However, in urban areas, pixel-based classification can be difficult since building colors differ and the shadows of buildings can obscure building segmentation. Therefore, if the boundaries of buildings can be extracted from lidar, this information could improve the accuracy of urban area classifications. In the data processing stage, lidar data and the aerial image are co-registered into the same coordinate system, and a local maxima filter is used for the building segmentation of lidar data, which are then converted into an image containing only building information. Then, multiresolution segmentation is achieved using a scale parameter, and a color and shape factor; a compactness factor and a layer weight are implemented for the classification using a class hierarchy. Results indicate that lidar can provide useful additional data when combined with high resolution images in the object-oriented hierarchical classification of urban areas.

힐버트 스캔 거리값을 이용한 물체식별 알고리즘 (Object Classification Method using Hilbert Scanning Distance)

  • 최정환;백영민;최진영
    • 전기학회논문지
    • /
    • 제57권4호
    • /
    • pp.700-705
    • /
    • 2008
  • In this paper, we propose object classification algorithm for real-time surveillance system. We have approached this problem using silhouette-based template matching. The silhouette of the object is extracted, and then it is compared with representative template models. Template models are previously stored in the database. Our algorithm is similar to previous pixel-based template matching scheme like Hausdorff Distance, but we use 1D image array rather than 2D regions inspired by Hilbert Path. Transformation of images could reduce computational burden to compute similarity between the detected image and the template images. Experimental results show robustness and real-time performance in object classification, even in low resolution images.