• 제목/요약/키워드: Object surveillance

검색결과 380건 처리시간 0.03초

Distance Measurement Using the Kinect Sensor with Neuro-image Processing

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권6호
    • /
    • pp.379-383
    • /
    • 2015
  • This paper presents an approach to detect object distance with the use of the recently developed low-cost Kinect sensor. The technique is based on Kinect color depth-image processing and can be used to design various computer-vision applications, such as object recognition, video surveillance, and autonomous path finding. The proposed technique uses keypoint feature detection in the Kinect depth image and advantages of depth pixels to directly obtain the feature distance in the depth images. This highly reduces the computational overhead and obtains the pixel distance in the Kinect captured images.

Specified Object Tracking Problem in an Environment of Multiple Moving Objects

  • Park, Seung-Min;Park, Jun-Heong;Kim, Hyung-Bok;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권2호
    • /
    • pp.118-123
    • /
    • 2011
  • Video based object tracking normally deals with non-stationary image streams that change over time. Robust and real time moving object tracking is considered to be a problematic issue in computer vision. Multiple object tracking has many practical applications in scene analysis for automated surveillance. In this paper, we introduce a specified object tracking based particle filter used in an environment of multiple moving objects. A differential image region based tracking method for the detection of multiple moving objects is used. In order to ensure accurate object detection in an unconstrained environment, a background image update method is used. In addition, there exist problems in tracking a particular object through a video sequence, which cannot rely only on image processing techniques. For this, a probabilistic framework is used. Our proposed particle filter has been proved to be robust in dealing with nonlinear and non-Gaussian problems. The particle filter provides a robust object tracking framework under ambiguity conditions and greatly improves the estimation accuracy for complicated tracking problems.

가정용 지능형 경비 로봇 시스템 개발 (Development of an Intelligent Security Robot System for Home Surveillance)

  • 박정호;신동관;우춘규;김형철;권용관;최병욱
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.810-816
    • /
    • 2007
  • A security robot system named EGIS-SR is a mobile security robot through one of the new growth engine project in robotic industries. It allows home surveillance through an autonomous mobile platform using onboard cameras and wireless security sensors. EGIS-SR has many sensors to allow autonomous navigation, hierarchical control architecture to handle lots of situations in monitoring home surveillance and mighty networks to achieve unmanned security services. EGIS-SR is tightly coupled with a networked security environment, where the information of the robot is remotely connected with the remote cockpit and patrol man. It achieved an intelligent unmanned security service. The robot is a two-wheeled mobile robot and has casters and suspension to overcome a doorsill. The dynamic motion is verified through $ADAMS^{TM}$ simulation. For the main controller, PXA270 based hardware platform based on linux kernel 2.6 is developed. In the linux platform, data handling for various sensors and the localization algorithm are performed. Also, a local path planning algorithm for object avoidance with ultrasonic sensors and localization using $StarGazer^{TM}$ is developed. Finally, for the automatic charging, a docking algorithm with infrared ray system is implemented.

감시 대상의 위치 추정을 통한 감시 시스템의 에너지 효율적 운영 방법 (An Energy-Efficient Operating Scheme of Surveillance System by Predicting the Location of Targets)

  • 이가욱;이수빈;이호원;조동호
    • 한국통신학회논문지
    • /
    • 제38C권2호
    • /
    • pp.172-180
    • /
    • 2013
  • 본 논문에서는 DSRC(Dedicated Short Range Communication)를 이용한 감시 대상의 검출을 통해 동작하는 카메라 기반의 감시 시스템 환경에서 저장 공간과 운영 전력 등 소비되는 자원을 절약하면서도 더 높은 사건 보고율을 달성할 수 있는 에너지 효율적 감시 카메라 운영 방법을 제시한다. 제안하는 감시 카메라 운영 방법은 입/출(入/出) 특성을 포함한 도로 환경과 카메라의 시야각을 추상화한 모델 정보와 감시 대상에 부착된 DSRC 단말로부터 수집되는 차량의 속도 벡터 정보를 고려하여 해당 감시 대상을 완벽하게 촬영하기 위해 사용되어야 할 카메라의 개수를 계산하고, 순차적으로 작동/종료함으로써 감시 시스템에서 사용되는 자원을 절약한다. 또한, 기존 감시 시스템의 운영 방식과 제안 방식의 성능 비교를 위한 모의실험을 수행하여 감시 시스템 운영비용의 절감 효과를 보였다.

엣지 블록체인 기반의 CCTV 영상 프라이버시 보호 기법 (CCTV Video Privacy Protection Scheme Based on Edge Blockchain)

  • 이동혁;박남제
    • 한국정보기술학회논문지
    • /
    • 제17권10호
    • /
    • pp.101-113
    • /
    • 2019
  • 최근의 지능형 영상감시 기술은 인공지능 기반 영상분석을 통하여 기존에 제공하지 못했던 선제적 예측감시 등 다양한 서비스의 제공이 가능하게 되었다. 지능형 영상감시에 있어 보안성의 확보는 필수적이며, 원본 CCTV 영상 데이터에 대한 조작이 발생할 경우, 사회적으로 큰 문제로 이어질 수 있다. 따라서 본 논문에서는 블록체인 기반의 지능형 영상감시환경을 제안하였다. 제안한 방식은 CCTV 영상데이터의 위변조 방지를 보장하며, 엣지 블록체인을 통하여 ROI 프라이버시 보호가 가능하여 객체의 프라이버시 노출이 없다는 장점이 있다. 또한, 영상 중복제거가 가능하여 전송 효율을 높이고 스토리지를 절감할 수 있어 효율적이다.

관심영역 구분을 통한 감시영상시스템의 효율적 압축 (Effective Compression of the Surveillance Video with Region of Interest)

  • 고미애;김영모;고광식
    • 정보처리학회논문지B
    • /
    • 제10B권1호
    • /
    • pp.95-102
    • /
    • 2003
  • 현재의 영상 감시 및 기록 시스템은 감시 영역 내 감시대상의 출현여부와 상관없이 감시카메라에 담기는 전체영상을 일관적으로 저장, 기록함으로써 데이터량이 방대한데 비해 그 가운데 정사 필요한 정보에 대한 량은 적다 하겠다. 배경영역 범위가 고정되어 있는 감시영상시스템에서 배경영상이 실제적인 감시대상에 대한 정보가 담긴 관심영역과 동일한 등급의 정보로 취급되어 기록이 됨으로써 데이터량에 비해 현장 감시효과를 제대로 보지 못하고 있는 것이다. 따라서, 감시 영역 내에서 관심영역에 대한 효율적인 정보의 기록과 보다 정확히 감시대상에 대한 영상을 획득하는 것이 감시영상시스템에서의 목표라 하겠다. 본 논문에서는 위의 문제점들을 해결하기 위해 감시영상으로부터 관심영역을 구분해내고 그 중요도에 따른 압축효율을 달리 함으로써 이를 구현할 수 있도록 하였다. 중요도를 결정하는 특성으로 관심영역을 무엇으로 할 것인가에 따라 감시영상을 영역별로 몇 단계의 블록으로 나누고 각 블록에 대해 해상도를 달리하여 중요도가 높은 관심영역 일수록 고해상의 영상을 획득하고 중요도가 낮을수록 저해상의 영상으로 처리하고 압축품질 또한 중요도가 놀은 관심영역일수록 압축품질은 높이고 중요도가 낮은 관심영 역일수록 압축률을 높임으로써 감시영상 정보의 감을 최적화 함은 물론 효율적인 감시 및 기록이 가능하도록 하였다.

A New Approach for Multiple Object Tracking ? Discrete Event based Multiple Object Tracking (DEMOT)

  • Kim, Chi-Ho;You, Bum-Jae;Kim, Hag-Bae;Oh, Sang-Rok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1134-1139
    • /
    • 2003
  • Tracking is a fundamental technique which is able to be applied to gesture recognition, visual surveillance, tangible agent and so forth. Especially, multiple object tracking has been extensively studied in recent years in order to perform many and more complicated tasks. In this paper, we propose a new approach of multiple object tracking which is based on discrete event. We call this system the DEMOT (Discrete Event based Multiple Object Tracking). This approach is based on the fact that a multiple object tracking can have just four situations - initiation, continuation, termination, and overlapping. Here, initiation, continuation, termination, and overlapping constitute a primary event set and this is based on the change of the number of extracted objects between a previous frame and a current frame. This system reduces computational costs and holds down the identity of all targets. We make experiments for this system with respect to the number of targets, each event, and processing period. We describe experimental results that show the successful multiple object tracking by using our approach.

  • PDF

CAMShift 영상 처리 기법을 이용한 기동형 경계 로봇의 목표추적 시스템 (Target-Tracking System for Mobile Surveillance Robot Using CAMShift Image Processing Technique)

  • 서봉철;김성수;이동염
    • 대한기계학회논문집A
    • /
    • 제38권2호
    • /
    • pp.129-136
    • /
    • 2014
  • 기동형 경계 로봇의 목표 추적 시스템은 효율적인 경계 임무를 수행하는데 있어서 중요한 부분이다. 본 논문은 영상 장치를 포함한 3 축 기동형 경계로봇의 영상 정보를 이용한 목표 추적 알고리즘을 제안하였다. 제안된 목표추적 알고리즘에서는 카메라 영상의 중심과 카메라 영상으로 포착된 목표물 중심 사이의 위치 에러를 이용하여 영상 장치의 목표 지향 벡터를 획득하였으며, 위치 에러를 획득하기 위하여 영상 처리 기법 중 하나인 CAMShift(Continuously Adaptive Mean Shift) 알고리즘을 적용하였다. 최종적으로, 목표 추적 알고리즘을 실험 모델에 적용해 봄으로써 실제 실험 환경에서의 목표 추적 알고리즘의 적용 타당성을 검증하였다.

Anomalous Event Detection in Traffic Video Based on Sequential Temporal Patterns of Spatial Interval Events

  • Ashok Kumar, P.M.;Vaidehi, V.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권1호
    • /
    • pp.169-189
    • /
    • 2015
  • Detection of anomalous events from video streams is a challenging problem in many video surveillance applications. One such application that has received significant attention from the computer vision community is traffic video surveillance. In this paper, a Lossy Count based Sequential Temporal Pattern mining approach (LC-STP) is proposed for detecting spatio-temporal abnormal events (such as a traffic violation at junction) from sequences of video streams. The proposed approach relies mainly on spatial abstractions of each object, mining frequent temporal patterns in a sequence of video frames to form a regular temporal pattern. In order to detect each object in every frame, the input video is first pre-processed by applying Gaussian Mixture Models. After the detection of foreground objects, the tracking is carried out using block motion estimation by the three-step search method. The primitive events of the object are represented by assigning spatial and temporal symbols corresponding to their location and time information. These primitive events are analyzed to form a temporal pattern in a sequence of video frames, representing temporal relation between various object's primitive events. This is repeated for each window of sequences, and the support for temporal sequence is obtained based on LC-STP to discover regular patterns of normal events. Events deviating from these patterns are identified as anomalies. Unlike the traditional frequent item set mining methods, the proposed method generates maximal frequent patterns without candidate generation. Furthermore, experimental results show that the proposed method performs well and can detect video anomalies in real traffic video data.

서베일런스에서 고속 푸리에 변환을 이용한 실시간 특징점 검출 (Real-Time Landmark Detection using Fast Fourier Transform in Surveillance)

  • 강성관;박양재;정경용;임기욱;이정현
    • 디지털융복합연구
    • /
    • 제10권7호
    • /
    • pp.123-128
    • /
    • 2012
  • 본 논문에서는 보다 정확한 물체 인식을 위하여 물체의 특징점 검출 시스템을 제안한다. 물체의 특징점 검출 시스템은 학습 단계와 검출 단계로 구분된다. 학습 단계에서는 각 특징점의 탐색영역을 설정하기 위한 관심영역모델과 탐색영역에서 특징점을 검출하기 위한 각 특징점별 검출기를 생성한다. 검출 단계에서는 학습 단계에서 생성했던 관심영역모델을 이용하여 입력 영상에서 각각의 특징점의 탐색영역을 설정한다. 시스템에서 검출하고자 하는 특징점 검출 방법은 고속 푸리에 변환을 이용하기 때문에 검출 속도가 빠르며 물체의 추적 시 실패하는 확률이 낮아진다. 제안하는 방법을 개발하여 실험 영상에 적용한 결과 추적하고자 하는 물체가 불규칙적인 속도로 움직일 때에도 안정적으로 추적함을 알 수 있었다. 실험 결과는 기존의 방법들에서 사용되었던 다양한 데이터 집합에 적용하였을 때 우수한 성능을 보여준다.