• 제목/요약/키워드: Object identification object tracking

검색결과 62건 처리시간 0.027초

객체 식별 및 추적을 위한 히스토그램 기반 특이값 분해 (Histogram-Based Singular Value Decomposition for Object Identification and Tracking)

  • 강예연;박정민;고훈준;정경용
    • 인터넷정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.29-35
    • /
    • 2023
  • CCTV는 범죄 예방, 공공 안전 강화, 교통 관리 등 다양한 목적으로 사용된다. 그러나 카메라의 범위와 해상도가 향상됨에 따라 영상에서 개인의 신상정보가 노출되는 위험성이 있다. 따라서 영상에서 개인 정보를 보호함과 동시에 개인을 식별할 수 있는 새로운 기술의 필요성이 존재한다. 본 논문에서는 객체 식별 및 추적을 위한 히스토그램 기반 특이값 분해를 제안한다. 제안하는 방법은 객체의 색상 정보를 이용하여 영상에 존재하는 서로 다른 객체를 구분한다. 객체 인식을 위하여 YOLO와 DeepSORT를 이용해 영상에 존재하는 사람을 탐지 및 추출한다. 탐지된 사람의 위치 정보를 이용해 흑백 히스토그램으로 색상 값을 추출한다. 추출한 색상 값 중 유의미한 정보만을 추출하여 사용하기 위해 특이값 분해를 이용한다. 특이값 분해를 이용할 때 결과에서 상위 특이값의 평균을 이용함으로 객체 색상 추출의 정확도를 높인다. 특이값 분해를 이용해 추출한 색상 정보를 다른 영상에 존재하는 색상과 비교하며 서로 다른 영상에 존재하는 동일 인물을 탐지한다. 색상 정보 비교를 위해 유클리드 거리를 이용하며 정확도 평가는 Top-N을 이용한다. 평가 결과 흑백 히스토그램과 특이값 분해를 사용하여 동일 인물을 탐지할 때 최대 100%에서 최소 74%를 기록하였다.

건설 현장 CCTV 영상을 이용한 작업자와 중장비 추출 및 다중 객체 추적 (Extraction of Workers and Heavy Equipment and Muliti-Object Tracking using Surveillance System in Construction Sites)

  • 조영운;강경수;손보식;류한국
    • 한국건축시공학회지
    • /
    • 제21권5호
    • /
    • pp.397-408
    • /
    • 2021
  • 건설업은 업무상 재해 발생빈도와 사망자 수가 다른 산업군에 비해 높아 가장 위험한 산업군으로 불린다. 정부는 건설 현장에서 발생하는 산업 재해를 줄이고 예방하기 위해 CCTV 설치 의무화를 발표했다. 건설 현장의 안전 관리자는 CCTV 관제를 통해 현장의 잠재된 위험성을 찾아 제거하고 재해를 예방한다. 하지만 장시간 관제 업무는 피로도가 매우 높아 중요한 상황을 놓치는 경우가 많다. 따라서 본 연구는 딥러닝 기반 컴퓨터 비전 모형 중 개체 분할인 YOLACT와 다중 객체 추적 기법인 SORT을 적용하여 다중 클래스 다중 객체 추적 시스템을 개발하였다. 건설 현장에서 촬영한 영상으로 제안한 방법론의 성능을 MS COCO와 MOT 평가지표로 평가하였다. SORT는 YOLACT의 의존성이 높아서 작은 객체가 적은 데이터셋을 학습한 모형의 성능으로 먼 거리의 물체를 추적하는 성능이 떨어지지만, 크기가 큰 객체에서 뛰어난 성능을 나타냈다. 본 연구로 인해 딥러닝 기반 컴퓨터 비전 기법들의 안전 관제 업무에 보조 역할로 업무상 재해를 예방할 수 있을 것으로 판단된다.

Automatic identification and analysis of multi-object cattle rumination based on computer vision

  • Yueming Wang;Tiantian Chen;Baoshan Li;Qi Li
    • Journal of Animal Science and Technology
    • /
    • 제65권3호
    • /
    • pp.519-534
    • /
    • 2023
  • Rumination in cattle is closely related to their health, which makes the automatic monitoring of rumination an important part of smart pasture operations. However, manual monitoring of cattle rumination is laborious and wearable sensors are often harmful to animals. Thus, we propose a computer vision-based method to automatically identify multi-object cattle rumination, and to calculate the rumination time and number of chews for each cow. The heads of the cattle in the video were initially tracked with a multi-object tracking algorithm, which combined the You Only Look Once (YOLO) algorithm with the kernelized correlation filter (KCF). Images of the head of each cow were saved at a fixed size, and numbered. Then, a rumination recognition algorithm was constructed with parameters obtained using the frame difference method, and rumination time and number of chews were calculated. The rumination recognition algorithm was used to analyze the head image of each cow to automatically detect multi-object cattle rumination. To verify the feasibility of this method, the algorithm was tested on multi-object cattle rumination videos, and the results were compared with the results produced by human observation. The experimental results showed that the average error in rumination time was 5.902% and the average error in the number of chews was 8.126%. The rumination identification and calculation of rumination information only need to be performed by computers automatically with no manual intervention. It could provide a new contactless rumination identification method for multi-cattle, which provided technical support for smart pasture.

A Mobile Object Tracking Scheme by Wired/wireless Integrated Street Lights with RFID

  • Cha, Mang Kyu;Kim, Jung Ok;Lee, Won Hee;Yu, Ki Yun
    • 대한공간정보학회지
    • /
    • 제24권2호
    • /
    • pp.25-35
    • /
    • 2016
  • Since a sophisticated location determination technology (LDT) is necessary for accurate positioning in urban area environments, numerous studies related to the LDT using the RFID (Radio Frequency IDentification) technology have been implemented for real-time positioning and data transferring. However, there are still lots of unsolved questions especially regarding what to use as base stations and what are corresponding results under the intrinsic complexity of alignment and configuration of components used for the RFID positioning. This study proposes the street light fixtures as base stations where the RFID receivers will be embedded for the mobile tracking scheme. As street light fixtures are usually installed at a certain distance interval, they can be used as base stations for the RFID receiver installation. Using the principle of the single row triangle network, the RFID receiver organization is determined based on the experiments such as recognition distance measurement and tag position accuracy estimation at inside and outside of the single row triangle network. The results verify that the mobile tracking scheme which uses RFID-embedded street light fixtures, suggested and configured in this study, is effective for the real-time outdoor positioning.

Deep Learning Based Emergency Response Traffic Signal Control System

  • Jeong-In, Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권2호
    • /
    • pp.121-129
    • /
    • 2023
  • 이 논문에서 우리는 응급상황에 대응하여 일정 구간의 교통신호를 능동적으로 제어함으로써 재산과 인명 손실을 최소화할 수 있는 응급상황 대응 교통신호 제어 시스템을 개발하였다. 응급 차량 단말기에서 식별정보 및 GPS 정보를 포함한 응급신호를 송출하면 카메라에서 주위 영상을 획득하게 되고, 딥러닝 기반으로 객체를 분석하여 객체의 위치, 종류, 크기 등 정보를 가지는 객체정보를 출력한다. 이 객체를 트래킹한 정보를 생성하여 신호체계를 검출한 후 신호체계를 응급모드로 전환하여 수신받은 GPS 정보를 기준으로 응급 차량을 식별·추적하고 이 응급 차량의 진행 경로 기준으로 긴급 제어신호를 교통신호 제어기로 전송할 수 있는 체계이다. 이 시스템은 응급신호에 따라 우선 적용되는 긴급 제어신호에 의해 응급 차량의 진행이 저지되지 않도록 하여, 교통상 장애에 따른 인명과 재산의 손실을 최소화할 수 있다.

An Innovative Approach to Track Moving Object based on RFID and Laser Ranging Information

  • Liang, Gaoli;Liu, Ran;Fu, Yulu;Zhang, Hua;Wang, Heng;Rehman, Shafiq ur;Guo, Mingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권1호
    • /
    • pp.131-147
    • /
    • 2020
  • RFID (Radio Frequency Identification) identifies a specific object by radio signals. As the tag provides a unique ID for the purpose of identification, RFID technology effectively solves the ambiguity and occlusion problem that challenges the laser or camera-based approach. This paper proposes an approach to track a moving object based on the integration of RFID and laser ranging information using a particle filter. To be precise, we split laser scan points into different clusters which contain the potential moving objects and calculate the radial velocity of each cluster. The velocity information is compared with the radial velocity estimated from RFID phase difference. In order to achieve the positioning of the moving object, we select a number of K best matching clusters to update the weights of the particle filter. To further improve the positioning accuracy, we incorporate RFID signal strength information into the particle filter using a pre-trained sensor model. The proposed approach is tested on a SCITOS service robot under different types of tags and various human velocities. The results show that fusion of signal strength and laser ranging information has significantly increased the positioning accuracy when compared to radial velocity matching-based or signal strength-based approaches. The proposed approach provides a solution for human machine interaction and object tracking, which has potential applications in many fields for example supermarkets, libraries, shopping malls, and exhibitions.

RFID를 이용한 다차원 특정 객체 추적 시스템의 구현 (Implementation of Multidimensional Trace System for Specific Object by RFID)

  • 민소연;정용훈
    • 한국산학기술학회논문지
    • /
    • 제10권12호
    • /
    • pp.3694-3701
    • /
    • 2009
  • 본 논문에서는 RFID를 이용한 위치 추적 시스템을 제안하고자 한다. 수동형 RFID 태그를 사용자의 신분증에 삽입하여 위치추적 및 출입인증에 사용한다. 리더는 주기적으로 신호를 브로드캐스팅 하며, 리더는 태그의 응답 신호를 받아 사용자의 위치를 파악할 수 있다. 위치추적 방법으로는 신호의 세기에 따라 이동 경로를 파악할 수 있으며, 오래 머문 곳에 대한 위치를 이용하여 관심 분야 파악이 가능하다. 또한 백앤드 서버에 저장된 태그 ID값을 이용하여 보안구역 내 출입인증 시스템으로 활용이 가능하다.

딥러닝 기반 소형선박 승선자 조난 인지 시스템 (Deep Learning based Distress Awareness System for Small Boat)

  • 전해명;노재규
    • 대한임베디드공학회논문지
    • /
    • 제17권5호
    • /
    • pp.281-288
    • /
    • 2022
  • According to statistics conducted by the Korea Coast Guard, the number of accidents on small boats under 5 tons is increasing every year. This is because only a small number of people are on board. The previously developed maritime distress and safety systems are not well distributed because passengers must be equipped with additional remote equipment. The purpose of this study is to develop a distress awareness system that recognizes man over-board situations in real time. This study aims to present the part of the passenger tracking system among the small ship's distress awareness situational system that can generate passenger's location information in real time using deep learning based object detection and tracking technologies. The system consisted of the following steps. 1) the passenger location information is generated in the form of Bounding box using its detection model (YOLOv3). 2) Based on the Bounding box data, Deep SORT predicts the Bounding box's position in the next frame of the image with Kalman filter. 3) When the actual Bounding Box is created within the range predicted by Kalman-filter, Deep SORT repeats the process of recognizing it as the same object. 4) If the Bounding box deviates the ship's area or an error occurs in the number of tracking occupant, the system is decided the distress situation and issues an alert. This study is expected to complement the problems of existing technologies and ensure the safety of individuals aboard small boats.

고해상도 지능형 감시시스템을 위한 실시간 얼굴영역 추적 (Real-time face tracking for high-resolution intelligent surveillance system)

  • 권오현;김상진;김영욱;백준기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.317-320
    • /
    • 2003
  • In this paper, we present real-time, accurate face region detection and tracking technique for an intelligent surveillance system. It is very important to obtain the high-resolution images, which enables accurate identification of an object-of-interest. Conventional surveillance or security systems, however, usually provide poor image quality because they use one or more fixed cameras and keep recording scenes without any clue. We implemented a real-time surveillance system that tracks a moving person using pan-tilt-zoom (PTZ) cameras. While tracking, the region-of-interest (ROI) can be obtained by using a low-pass filter and background subtraction. Color information in the ROI is updated to extract features for optimal tracking and zooming. The experiment with real human faces showed highly acceptable results in the sense of both accuracy and computational efficiency.

  • PDF

RFID 데이터 스트림의 효율적인 필터링 기법 (Efficient Filtering Method for RFID Data Streams)

  • 윤홍원
    • 한국콘텐츠학회논문지
    • /
    • 제7권10호
    • /
    • pp.27-35
    • /
    • 2007
  • RFID 기술은 객체의 추적이나 SCM 시스템에서 중요한 역할을 하고 있으며 RFID 응용에서는 새로운 데이터 관리 방법을 필요로 하고 있다. RFID 데이터는 자동으로 빠르게 생성되며 객체의 실시간 모니터링이나 추적에 사용되고 있다. 이러한 RFID 응용의 대부분은 이벤트가 발생할 때 타임스탬프를 가지는 특성이 있다. 본 논문에서는 RFID 객체를 모니터링하고 상태 변화의 이력을 관리하기 위하여 시간지원 RFID 데이터 모델을 제시하고 이 모델에 기반을 둔 비활성 데이터의 필터링 기법을 제안하다. 제안한 시간지원 RFID 데이터 모델은 RFID 객체를 모니터링할 수 있는 핵심 연산을 포함하고 있으며, 비활성 데이터의 필터링 기법을 통하여 질의 처리의 속도가 향상됨을 보였다.