• Title/Summary/Keyword: Object identification object tracking

Search Result 62, Processing Time 0.039 seconds

Target identification for visual tracking

  • Lee, Joon-Woong;Yun, Joo-Seop;Kweon, In-So
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.145-148
    • /
    • 1996
  • In moving object tracking based on the visual sensory feedback, a prerequisite is to determine which feature or which object is to be tracked and then the feature or the object identification precedes the tracking. In this paper, we focus on the object identification not image feature identification. The target identification is realized by finding out corresponding line segments to the hypothesized model segments of the target. The key idea is the combination of the Mahalanobis distance with the geometrica relationship between model segments and extracted line segments. We demonstrate the robustness and feasibility of the proposed target identification algorithm by a moving vehicle identification and tracking in the video traffic surveillance system over images of a road scene.

  • PDF

Object detection and tracking using a high-performance artificial intelligence-based 3D depth camera: towards early detection of African swine fever

  • Ryu, Harry Wooseuk;Tai, Joo Ho
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.17.1-17.10
    • /
    • 2022
  • Background: Inspection of livestock farms using surveillance cameras is emerging as a means of early detection of transboundary animal disease such as African swine fever (ASF). Object tracking, a developing technology derived from object detection aims to the consistent identification of individual objects in farms. Objectives: This study was conducted as a preliminary investigation for practical application to livestock farms. With the use of a high-performance artificial intelligence (AI)-based 3D depth camera, the aim is to establish a pathway for utilizing AI models to perform advanced object tracking. Methods: Multiple crossovers by two humans will be simulated to investigate the potential of object tracking. Inspection of consistent identification will be the evidence of object tracking after crossing over. Two AI models, a fast model and an accurate model, were tested and compared with regard to their object tracking performance in 3D. Finally, the recording of pig pen was also processed with aforementioned AI model to test the possibility of 3D object detection. Results: Both AI successfully processed and provided a 3D bounding box, identification number, and distance away from camera for each individual human. The accurate detection model had better evidence than the fast detection model on 3D object tracking and showed the potential application onto pigs as a livestock. Conclusions: Preparing a custom dataset to train AI models in an appropriate farm is required for proper 3D object detection to operate object tracking for pigs at an ideal level. This will allow the farm to smoothly transit traditional methods to ASF-preventing precision livestock farming.

Detection using Optical Flow and EMD Algorithm and Tracking using Kalman Filter of Moving Objects (이동물체들의 Optical flow와 EMD 알고리즘을 이용한 식별과 Kalman 필터를 이용한 추적)

  • Lee, Jung Sik;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1047-1055
    • /
    • 2015
  • We proposes a method for improving the identification and tracking of the moving objects in intelligent video surveillance system. The proposed method consists of 3 parts: object detection, object recognition, and object tracking. First of all, we use a GMM(Gaussian Mixture Model) to eliminate the background, and extract the moving object. Next, we propose a labeling technique forrecognition of the moving object. and the method for identifying the recognized object by using the optical flow and EMD algorithm. Lastly, we proposes method to track the location of the identified moving object regions by using location information of moving objects and Kalman filter. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

Multiple Object Tracking and Identification System Using CCTV and RFID (감시 카메라와 RFID를 활용한 다수 객체 추적 및 식별 시스템)

  • Kim, Jin-Ah;Moon, Nammee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.2
    • /
    • pp.51-58
    • /
    • 2017
  • Because of safety and security, Surveillance camera market is growing. Accordingly, Study on video recognition and tracking is also actively in progress, but There is a limit to identify object by obtaining the information of object identified and tracked. Especially, It is more difficult to identify multiple objects in open space like shopping mall, airport and others utilized surveillance camera. Therefore, This paper proposed adding object identification function by using RFID to existing video-based object recognition and tracking system. Also, We tried to complement each other to solve the problem of video and RFID based. Thus, through the interaction of system modules We propose a solution to the problems of failing video-based object recognize and tracking and the problems that could be cased by the recognition error of RFID. The system designed to identify the object by classifying the identification of object in four steps so that the data reliability of the identified object can be maintained. To judge the efficiency of this system, this demonstrated by implementing the simulation program.

Viewpoint Invariant Person Re-Identification for Global Multi-Object Tracking with Non-Overlapping Cameras

  • Gwak, Jeonghwan;Park, Geunpyo;Jeon, Moongu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2075-2092
    • /
    • 2017
  • Person re-identification is to match pedestrians observed from non-overlapping camera views. It has important applications in video surveillance such as person retrieval, person tracking, and activity analysis. However, it is a very challenging problem due to illumination, pose and viewpoint variations between non-overlapping camera views. In this work, we propose a viewpoint invariant method for matching pedestrian images using orientation of pedestrian. First, the proposed method divides a pedestrian image into patches and assigns angle to a patch using the orientation of the pedestrian under the assumption that a person body has the cylindrical shape. The difference between angles are then used to compute the similarity between patches. We applied the proposed method to real-time global multi-object tracking across multiple disjoint cameras with non-overlapping field of views. Re-identification algorithm makes global trajectories by connecting local trajectories obtained by different local trackers. The effectiveness of the viewpoint invariant method for person re-identification was validated on the VIPeR dataset. In addition, we demonstrated the effectiveness of the proposed approach for the inter-camera multiple object tracking on the MCT dataset with ground truth data for local tracking.

Appearance Based Object Identification for Mobile Robot Localization in Intelligent Space with Distributed Vision Sensors

  • Jin, TaeSeok;Morioka, Kazuyuki;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.165-171
    • /
    • 2004
  • Robots will be able to coexist with humans and support humans effectively in near future. One of the most important aspects in the development of human-friendly robots is to cooperation between humans and robots. In this paper, we proposed a method for multi-object identification in order to achieve such human-centered system and robot localization in intelligent space. The intelligent space is the space where many intelligent devices, such as computers and sensors, are distributed. The Intelligent Space achieves the human centered services by accelerating the physical and psychological interaction between humans and intelligent devices. As an intelligent device of the Intelligent Space, a color CCD camera module, which includes processing and networking part, has been chosen. The Intelligent Space requires functions of identifying and tracking the multiple objects to realize appropriate services to users under the multi-camera environments. In order to achieve seamless tracking and location estimation many camera modules are distributed. They causes some errors about object identification among different camera modules. This paper describes appearance based object representation for the distributed vision system in Intelligent Space to achieve consistent labeling of all objects. Then, we discuss how to learn the object color appearance model and how to achieve the multi-object tracking under occlusions.

Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID (계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템)

  • Lee, Sang-Hyun;Yang, Seong-Hun;Oh, Seung-Jin;Kang, Jinbeom
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • Recently, the amount of video data collected from smartphones, CCTVs, black boxes, and high-definition cameras has increased rapidly. According to the increasing video data, the requirements for analysis and utilization are increasing. Due to the lack of skilled manpower to analyze videos in many industries, machine learning and artificial intelligence are actively used to assist manpower. In this situation, the demand for various computer vision technologies such as object detection and tracking, action detection, emotion detection, and Re-ID also increased rapidly. However, the object detection and tracking technology has many difficulties that degrade performance, such as re-appearance after the object's departure from the video recording location, and occlusion. Accordingly, action and emotion detection models based on object detection and tracking models also have difficulties in extracting data for each object. In addition, deep learning architectures consist of various models suffer from performance degradation due to bottlenects and lack of optimization. In this study, we propose an video analysis system consists of YOLOv5 based DeepSORT object tracking model, SlowFast based action recognition model, Torchreid based Re-ID model, and AWS Rekognition which is emotion recognition service. Proposed model uses single-linkage hierarchical clustering based Re-ID and some processing method which maximize hardware throughput. It has higher accuracy than the performance of the re-identification model using simple metrics, near real-time processing performance, and prevents tracking failure due to object departure and re-emergence, occlusion, etc. By continuously linking the action and facial emotion detection results of each object to the same object, it is possible to efficiently analyze videos. The re-identification model extracts a feature vector from the bounding box of object image detected by the object tracking model for each frame, and applies the single-linkage hierarchical clustering from the past frame using the extracted feature vectors to identify the same object that failed to track. Through the above process, it is possible to re-track the same object that has failed to tracking in the case of re-appearance or occlusion after leaving the video location. As a result, action and facial emotion detection results of the newly recognized object due to the tracking fails can be linked to those of the object that appeared in the past. On the other hand, as a way to improve processing performance, we introduce Bounding Box Queue by Object and Feature Queue method that can reduce RAM memory requirements while maximizing GPU memory throughput. Also we introduce the IoF(Intersection over Face) algorithm that allows facial emotion recognized through AWS Rekognition to be linked with object tracking information. The academic significance of this study is that the two-stage re-identification model can have real-time performance even in a high-cost environment that performs action and facial emotion detection according to processing techniques without reducing the accuracy by using simple metrics to achieve real-time performance. The practical implication of this study is that in various industrial fields that require action and facial emotion detection but have many difficulties due to the fails in object tracking can analyze videos effectively through proposed model. Proposed model which has high accuracy of retrace and processing performance can be used in various fields such as intelligent monitoring, observation services and behavioral or psychological analysis services where the integration of tracking information and extracted metadata creates greate industrial and business value. In the future, in order to measure the object tracking performance more precisely, there is a need to conduct an experiment using the MOT Challenge dataset, which is data used by many international conferences. We will investigate the problem that the IoF algorithm cannot solve to develop an additional complementary algorithm. In addition, we plan to conduct additional research to apply this model to various fields' dataset related to intelligent video analysis.

Object Tracking Algorithm using Feature Map based on Siamese Network (Siamese Network의 특징맵을 이용한 객체 추적 알고리즘)

  • Lim, Su-Chang;Park, Sung-Wook;Kim, Jong-Chan;Ryu, Chang-Su
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.6
    • /
    • pp.796-804
    • /
    • 2021
  • In computer vision, visual tracking method addresses the problem of localizing an specific object in video sequence according to the bounding box. In this paper, we propose a tracking method by introducing the feature correlation comparison into the siamese network to increase its matching identification. We propose a way to compute location of object to improve matching performance by a correlation operation, which locates parts for solving the searching problem. The higher layer in the network can extract a lot of object information. The lower layer has many location information. To reduce error rate of the object center point, we built a siamese network that extracts the distribution and location information of target objects. As a result of the experiment, the average center error rate was less than 25%.

Moving Objects Tracking Method using Spatial Projection in Intelligent Video Traffic Surveillance System (지능형 영상 교통 감시 시스템에서 공간 투영기법을 이용한 이동물체 추적 방법)

  • Hong, Kyung Taek;Shim, Jae Homg;Cho, Young Im
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.35-41
    • /
    • 2015
  • When a video surveillance system tracks a specific object, it is very important to get quickly the information of the object through fast image processing. Usually one camera surveillance system for tracking the object made results in various problems such like occlusion, image noise during the tracking process. It makes difficulties on image based moving object tracking. Therefore, to overcome the difficulties the multi video surveillance system which installed several camera within interested area and looking the same object from multi angles of view could be considered as a solution. If multi cameras are used for tracking object, it is capable of making a decision having high accuracy in more wide space. This paper proposes a method of recognizing and tracking a specific object like a car using the homography in which multi cameras are installed at the crossroad.

Recognition and Tracking of Moving Objects Using Label-merge Method Based on Fuzzy Clustering Algorithm (퍼지 클러스터링 알고리즘 기반의 라벨 병합을 이용한 이동물체 인식 및 추적)

  • Lee, Seong Min;Seong, Il;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.293-300
    • /
    • 2018
  • We propose a moving object extraction and tracking method for improvement of animal identification and tracking technology. First, we propose a method of merging separated moving objects into a moving object by using FCM (Fuzzy C-Means) clustering algorithm to solve the problem of moving object loss caused by moving object extraction process. In addition, we propose a method of extracting data from a moving object and a method of counting moving objects to determine the number of clusters in order to satisfy the conditions for performing FCM clustering algorithm. Then, we propose a method to continuously track merged moving objects. In the proposed method, color histograms are extracted from feature information of each moving object, and the histograms are continuously accumulated so as not to react sensitively to noise or changes, and the average is obtained and stored. Thereafter, when a plurality of moving objects are overlapped and separated, the stored color histogram is compared with each other to correctly recognize each moving object. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.