• Title/Summary/Keyword: Object detection optimization method

Search Result 27, Processing Time 0.368 seconds

Drone Obstacle Avoidance Algorithm using Camera-based Reinforcement Learning (카메라 기반 강화학습을 이용한 드론 장애물 회피 알고리즘)

  • Jo, Si-hun;Kim, Tae-Young
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.5
    • /
    • pp.63-71
    • /
    • 2021
  • Among drone autonomous flight technologies, obstacle avoidance is a very important technology that can prevent damage to drones or surrounding environments and prevent danger. Although the LiDAR sensor-based obstacle avoidance method shows relatively high accuracy and is widely used in recent studies, it has disadvantages of high unit price and limited processing capacity for visual information. Therefore, this paper proposes an obstacle avoidance algorithm for drones using camera-based PPO(Proximal Policy Optimization) reinforcement learning, which is relatively inexpensive and highly scalable using visual information. Drone, obstacles, target points, etc. are randomly located in a learning environment in the three-dimensional space, stereo images are obtained using a Unity camera, and then YOLov4Tiny object detection is performed. Next, the distance between the drone and the detected object is measured through triangulation of the stereo camera. Based on this distance, the presence or absence of obstacles is determined. Penalties are set if they are obstacles and rewards are given if they are target points. The experimennt of this method shows that a camera-based obstacle avoidance algorithm can be a sufficiently similar level of accuracy and average target point arrival time compared to a LiDAR-based obstacle avoidance algorithm, so it is highly likely to be used.

STAR-24K: A Public Dataset for Space Common Target Detection

  • Zhang, Chaoyan;Guo, Baolong;Liao, Nannan;Zhong, Qiuyun;Liu, Hengyan;Li, Cheng;Gong, Jianglei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.365-380
    • /
    • 2022
  • The target detection algorithm based on supervised learning is the current mainstream algorithm for target detection. A high-quality dataset is the prerequisite for the target detection algorithm to obtain good detection performance. The larger the number and quality of the dataset, the stronger the generalization ability of the model, that is, the dataset determines the upper limit of the model learning. The convolutional neural network optimizes the network parameters in a strong supervision method. The error is calculated by comparing the predicted frame with the manually labeled real frame, and then the error is passed into the network for continuous optimization. Strongly supervised learning mainly relies on a large number of images as models for continuous learning, so the number and quality of images directly affect the results of learning. This paper proposes a dataset STAR-24K (meaning a dataset for Space TArget Recognition with more than 24,000 images) for detecting common targets in space. Since there is currently no publicly available dataset for space target detection, we extracted some pictures from a series of channels such as pictures and videos released by the official websites of NASA (National Aeronautics and Space Administration) and ESA (The European Space Agency) and expanded them to 24,451 pictures. We evaluate popular object detection algorithms to build a benchmark. Our STAR-24K dataset is publicly available at https://github.com/Zzz-zcy/STAR-24K.

The Effect of Hyperparameter Choice on ReLU and SELU Activation Function

  • Kevin, Pratama;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.6 no.4
    • /
    • pp.73-79
    • /
    • 2017
  • The Convolutional Neural Network (CNN) has shown an excellent performance in computer vision task. Applications of CNN include image classification, object detection in images, autonomous driving, etc. This paper will evaluate the performance of CNN model with ReLU and SELU as activation function. The evaluation will be performed on four different choices of hyperparameter which are initialization method, network configuration, optimization technique, and regularization. We did experiment on each choice of hyperparameter and show how it influences the network convergence and test accuracy. In this experiment, we also discover performance improvement when using SELU as activation function over ReLU.

Optimization of Action Recognition based on Slowfast Deep Learning Model using RGB Video Data (RGB 비디오 데이터를 이용한 Slowfast 모델 기반 이상 행동 인식 최적화)

  • Jeong, Jae-Hyeok;Kim, Min-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1049-1058
    • /
    • 2022
  • HAR(Human Action Recognition) such as anomaly and object detection has become a trend in research field(s) that focus on utilizing Artificial Intelligence (AI) methods to analyze patterns of human action in crime-ridden area(s), media services, and industrial facilities. Especially, in real-time system(s) using video streaming data, HAR has become a more important AI-based research field in application development and many different research fields using HAR have currently been developed and improved. In this paper, we propose and analyze a deep-learning-based HAR that provides more efficient scheme(s) using an intelligent AI models, such system can be applied to media services using RGB video streaming data usage without feature extraction pre-processing. For the method, we adopt Slowfast based on the Deep Neural Network(DNN) model under an open dataset(HMDB-51 or UCF101) for improvement in prediction accuracy.

Repeated Cropping based on Deep Learning for Photo Re-composition (사진 구도 개선을 위한 딥러닝 기반 반복적 크롭핑)

  • Hong, Eunbin;Jeon, Junho;Lee, Seungyong
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1356-1364
    • /
    • 2016
  • This paper proposes a novel aesthetic photo recomposition method using a deep convolutional neural network (DCNN). Previous recomposition approaches define the aesthetic score of photo composition based on the distribution of salient objects, and enhance the photo composition by maximizing the score. These methods suffer from heavy computational overheads, and often fail to enhance the composition because their optimization depends on the performance of existing salient object detection algorithms. Unlike previous approaches, we address the photo recomposition problem by utilizing DCNN, which shows remarkable performance in object detection and recognition. DCNN is used to iteratively predict cropping directions for a given photo, thus generating an aesthetically enhanced photo in terms of composition. Experimental results and user study show that the proposed framework can automatically crop the photo to follow specific composition guidelines, such as the rule of thirds.

Graph Construction Based on Fast Low-Rank Representation in Graph-Based Semi-Supervised Learning (그래프 기반 준지도 학습에서 빠른 낮은 계수 표현 기반 그래프 구축)

  • Oh, Byonghwa;Yang, Jihoon
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.15-21
    • /
    • 2018
  • Low-Rank Representation (LRR) based methods are widely used in many practical applications, such as face clustering and object detection, because they can guarantee high prediction accuracy when used to constructing graphs in graph - based semi-supervised learning. However, in order to solve the LRR problem, it is necessary to perform singular value decomposition on the square matrix of the number of data points for each iteration of the algorithm; hence the calculation is inefficient. To solve this problem, we propose an improved and faster LRR method based on the recently published Fast LRR (FaLRR) and suggests ways to introduce and optimize additional constraints on the underlying optimization goals in order to address the fact that the FaLRR is fast but actually poor in classification problems. Our experiments confirm that the proposed method finds a better solution than LRR does. We also propose Fast MLRR (FaMLRR), which shows better results when the goal of minimizing is added.

A study on the Application of Optimal Evacuation Route through Evacuation Simulation System in Case of Fire (화재발생 시 대피시뮬레이션 시스템을 통한 최적대피경로 적용에 관한 연구)

  • Kim, Daeill;Jeong, Juahn;Park, Sungchan;Go, Jooyeon;Yeom, Chunho
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.96-110
    • /
    • 2020
  • Recently, due to global warming, it is easily exposed to various disasters such as fire, flood, and earthquake. In particular, large-scale disasters have continuously been occurring in crowded areas such as traditional markets, facilities for the elderly and children, and public facilities where various people stay. Purpose: This study aims to detect a fire occurred in crowded facilities early in the event to analyze and provide an optimal evacuation route using big data and advanced technology. Method: The researchers propose a new algorithm through context-aware 3D object model technology and A* algorithm optimization and propose a scenario-based optimal evacuation route selection technique. Result: Using the HPA* E algorithm, the evacuation simulation in the event of a fire was reproduced as a 3D model and the optimal evacuation route and evacuation time were calculated for each scenario. Conclusion: It is expected to reduce fatalities and injuries through the evacuation induction technique that enables evacuation of the building in the shortest path by analyzing in real-time via fire detection sensors that detects the temperature, flame, and smoke.