• Title/Summary/Keyword: Object color identification

Search Result 19, Processing Time 0.019 seconds

Object Color Identification Embedded System Realization for Uninhabited Stock Management (무인물류관리시스템을 위한 물체컬러식별 임베디드시스템 구현)

  • Lar, Ki-Kong;Ryu, Kwang-Ryol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.289-292
    • /
    • 2007
  • An object color identification and classification embedded system realization for uninhabited stock management is presented in this paper. The embedded system is realized by using ultrasonic sensor to extract the object and distance, and detecting binary image from USB CCD camera. The algorithm is identified by comparing the reference pattern with the color pattern of input image, and move to the settled rack at the store. The experimental result leads to use the uninhibited stock management with practice as a robot.

  • PDF

Object Identification and Localization for Image Recognition (이미지 인식을 위한 객체 식별 및 지역화)

  • Lee, Yong-Hwan;Park, Je-Ho;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.49-55
    • /
    • 2012
  • This paper proposes an efficient method of object identification and localization for image recognition. The new proposed algorithm utilizes correlogram back-projection in the YCbCr chromaticity components to handle the problem of sub-region querying. Utilizing similar spatial color information enables users to detect and locate primary location and candidate regions accurately, without the need for additional information about the number of objects. Comparing this proposed algorithm to existing methods, experimental results show that improvement of 21% was observed. These results reveal that color correlogram is markedly more effective than color histogram for this task. Main contribution of this paper is that a different way of treating color spaces and a histogram measure, which involves information on spatial color, are applied in object localization. This approach opens up new opportunities for object detection for the use in the area of interactive image and 2-D based augmented reality.

Appearance Based Object Identification for Mobile Robot Localization in Intelligent Space with Distributed Vision Sensors

  • Jin, TaeSeok;Morioka, Kazuyuki;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.165-171
    • /
    • 2004
  • Robots will be able to coexist with humans and support humans effectively in near future. One of the most important aspects in the development of human-friendly robots is to cooperation between humans and robots. In this paper, we proposed a method for multi-object identification in order to achieve such human-centered system and robot localization in intelligent space. The intelligent space is the space where many intelligent devices, such as computers and sensors, are distributed. The Intelligent Space achieves the human centered services by accelerating the physical and psychological interaction between humans and intelligent devices. As an intelligent device of the Intelligent Space, a color CCD camera module, which includes processing and networking part, has been chosen. The Intelligent Space requires functions of identifying and tracking the multiple objects to realize appropriate services to users under the multi-camera environments. In order to achieve seamless tracking and location estimation many camera modules are distributed. They causes some errors about object identification among different camera modules. This paper describes appearance based object representation for the distributed vision system in Intelligent Space to achieve consistent labeling of all objects. Then, we discuss how to learn the object color appearance model and how to achieve the multi-object tracking under occlusions.

Evolutionary Generation Based Color Detection Technique for Object Identification in Degraded Robot Vision (저하된 로봇 비전에서의 물체 인식을 위한 진화적 생성 기반의 컬러 검출 기법)

  • Kim, Kyoungtae;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1040-1046
    • /
    • 2015
  • This paper introduces GP(Genetic Programming) based color detection model for an object detection of humanoid robot vision. Existing color detection methods have used linear/nonlinear transformation of RGB color-model. However, most of cases have difficulties to classify colors satisfactory because of interference of among color channels and susceptibility for illumination variation. Especially, they are outstanding in degraded images from robot vision. To solve these problems, we propose illumination robust and non-parametric multi-colors detection model using evolution of GP. The proposed method is compared to the existing color-models for various environments in robot vision for real humanoid Nao.

Histogram-Based Singular Value Decomposition for Object Identification and Tracking (객체 식별 및 추적을 위한 히스토그램 기반 특이값 분해)

  • Ye-yeon Kang;Jeong-Min Park;HoonJoon Kouh;Kyungyong Chung
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.29-35
    • /
    • 2023
  • CCTV is used for various purposes such as crime prevention, public safety reinforcement, and traffic management. However, as the range and resolution of the camera improve, there is a risk of exposing personal information in the video. Therefore, there is a need for new technologies that can identify individuals while protecting personal information in images. In this paper, we propose histogram-based singular value decomposition for object identification and tracking. The proposed method distinguishes different objects present in the image using color information of the object. For object recognition, YOLO and DeepSORT are used to detect and extract people present in the image. Color values are extracted with a black-and-white histogram using location information of the detected person. Singular value decomposition is used to extract and use only meaningful information among the extracted color values. When using singular value decomposition, the accuracy of object color extraction is increased by using the average of the upper singular value in the result. Color information extracted using singular value decomposition is compared with colors present in other images, and the same person present in different images is detected. Euclidean distance is used for color information comparison, and Top-N is used for accuracy evaluation. As a result of the evaluation, when detecting the same person using a black-and-white histogram and singular value decomposition, it recorded a maximum of 100% to a minimum of 74%.

Recognition and Tracking of Moving Objects Using Label-merge Method Based on Fuzzy Clustering Algorithm (퍼지 클러스터링 알고리즘 기반의 라벨 병합을 이용한 이동물체 인식 및 추적)

  • Lee, Seong Min;Seong, Il;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.293-300
    • /
    • 2018
  • We propose a moving object extraction and tracking method for improvement of animal identification and tracking technology. First, we propose a method of merging separated moving objects into a moving object by using FCM (Fuzzy C-Means) clustering algorithm to solve the problem of moving object loss caused by moving object extraction process. In addition, we propose a method of extracting data from a moving object and a method of counting moving objects to determine the number of clusters in order to satisfy the conditions for performing FCM clustering algorithm. Then, we propose a method to continuously track merged moving objects. In the proposed method, color histograms are extracted from feature information of each moving object, and the histograms are continuously accumulated so as not to react sensitively to noise or changes, and the average is obtained and stored. Thereafter, when a plurality of moving objects are overlapped and separated, the stored color histogram is compared with each other to correctly recognize each moving object. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

Ceramic fabrication for actual color and shape (실제적인 색과 형태를 위한 세라믹 제작)

  • Baek, Seung-Hun
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.24 no.2
    • /
    • pp.86-100
    • /
    • 2015
  • To harmonize with the remaining natural teeth a dentist and technician make an effort to do. Dental ceramic perfectly reproduce the functionality and esthetic is so moved that will deliver to the patient. However It is not easy to overcome the problem. Actually, it can't have the same spectrum curve between different object. The spectrum curve and reflectance is a unique feature of an object like fingerprints. So it is not that the identification of spectral curves that we usually focuses color. We need to understand the process of matamerism makes something like a combination of color perception. In other word that will tell in our field with ceramic teeth of the patient wish to match the color matching process to simulate the cone in our retinas with the same combination.

Video Scene Detection using Shot Clustering based on Visual Features (시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법)

  • Shin, Dong-Wook;Kim, Tae-Hwan;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Video data comes in the form of the unstructured and the complex structure. As the importance of efficient management and retrieval for video data increases, studies on the video parsing based on the visual features contained in the video contents are researched to reconstruct video data as the meaningful structure. The early studies on video parsing are focused on splitting video data into shots, but detecting the shot boundary defined with the physical boundary does not cosider the semantic association of video data. Recently, studies on structuralizing video shots having the semantic association to the video scene defined with the semantic boundary by utilizing clustering methods are actively progressed. Previous studies on detecting the video scene try to detect video scenes by utilizing clustering algorithms based on the similarity measure between video shots mainly depended on color features. However, the correct identification of a video shot or scene and the detection of the gradual transitions such as dissolve, fade and wipe are difficult because color features of video data contain a noise and are abruptly changed due to the intervention of an unexpected object. In this paper, to solve these problems, we propose the Scene Detector by using Color histogram, corner Edge and Object color histogram (SDCEO) that clusters similar shots organizing same event based on visual features including the color histogram, the corner edge and the object color histogram to detect video scenes. The SDCEO is worthy of notice in a sense that it uses the edge feature with the color feature, and as a result, it effectively detects the gradual transitions as well as the abrupt transitions. The SDCEO consists of the Shot Bound Identifier and the Video Scene Detector. The Shot Bound Identifier is comprised of the Color Histogram Analysis step and the Corner Edge Analysis step. In the Color Histogram Analysis step, SDCEO uses the color histogram feature to organizing shot boundaries. The color histogram, recording the percentage of each quantized color among all pixels in a frame, are chosen for their good performance, as also reported in other work of content-based image and video analysis. To organize shot boundaries, SDCEO joins associated sequential frames into shot boundaries by measuring the similarity of the color histogram between frames. In the Corner Edge Analysis step, SDCEO identifies the final shot boundaries by using the corner edge feature. SDCEO detect associated shot boundaries comparing the corner edge feature between the last frame of previous shot boundary and the first frame of next shot boundary. In the Key-frame Extraction step, SDCEO compares each frame with all frames and measures the similarity by using histogram euclidean distance, and then select the frame the most similar with all frames contained in same shot boundary as the key-frame. Video Scene Detector clusters associated shots organizing same event by utilizing the hierarchical agglomerative clustering method based on the visual features including the color histogram and the object color histogram. After detecting video scenes, SDCEO organizes final video scene by repetitive clustering until the simiarity distance between shot boundaries less than the threshold h. In this paper, we construct the prototype of SDCEO and experiments are carried out with the baseline data that are manually constructed, and the experimental results that the precision of shot boundary detection is 93.3% and the precision of video scene detection is 83.3% are satisfactory.

Area Classification, Identification and Tracking for Multiple Moving Objects with the Similar Colors (유사한 색상을 지닌 다수의 이동 물체 영역 분류 및 식별과 추적)

  • Lee, Jung Sik;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.477-486
    • /
    • 2016
  • This paper presents the area classification, identification, and tracking for multiple moving objects with the similar colors. To do this, first, we use the GMM(Gaussian Mixture Model)-based background modeling method to detect the moving objects. Second, we propose the use of the binary and morphology of image in order to eliminate the shadow and noise in case of detection of the moving object. Third, we recognize ROI(region of interest) of the moving object through labeling method. And, we propose the area classification method to remove the background from the detected moving objects and the novel method for identifying the classified moving area. Also, we propose the method for tracking the identified moving object using Kalman filter. To the end, we propose the effective tracking method when detecting the multiple objects with the similar colors. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

Multiple-Shot Person Re-identification by Features Learned from Third-party Image Sets

  • Zhao, Yanna;Wang, Lei;Zhao, Xu;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.775-792
    • /
    • 2015
  • Person re-identification is an important and challenging task in computer vision with numerous real world applications. Despite significant progress has been made in the past few years, person re-identification remains an unsolved problem. This paper presents a novel appearance-based approach to person re-identification. The approach exploits region covariance matrix and color histograms to capture the statistical properties and chromatic information of each object. Robustness against low resolution, viewpoint changes and pose variations is achieved by a novel signature, that is, the combination of Log Covariance Matrix feature and HSV histogram (LCMH). In order to further improve re-identification performance, third-party image sets are utilized as a common reference to sufficiently represent any image set with the same type. Distinctive and reliable features for a given image set are extracted through decision boundary between the specific set and a third-party image set supervised by max-margin criteria. This method enables the usage of an existing dataset to represent new image data without time-consuming data collection and annotation. Comparisons with state-of-the-art methods carried out on benchmark datasets demonstrate promising performance of our method.