• Title/Summary/Keyword: Object Segmentation and Tracking

Search Result 102, Processing Time 0.028 seconds

Optical Flow Measurement Based on Boolean Edge Detection and Hough Transform

  • Chang, Min-Hyuk;Kim, Il-Jung;Park, Jong an
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.119-126
    • /
    • 2003
  • The problem of tracking moving objects in a video stream is discussed in this pa-per. We discussed the popular technique of optical flow for moving object detection. Optical flow finds the velocity vectors at each pixel in the entire video scene. However, optical flow based methods require complex computations and are sensitive to noise. In this paper, we proposed a new method based on the Hough transform and on voting accumulation for improving the accuracy and reducing the computation time. Further, we applied the Boo-lean based edge detector for edge detection. Edge detection and segmentation are used to extract the moving objects in the image sequences and reduce the computation time of the CHT. The Boolean based edge detector provides accurate and very thin edges. The difference of the two edge maps with thin edges gives better localization of moving objects. The simulation results show that the proposed method improves the accuracy of finding the optical flow vectors and more accurately extracts moving objects' information. The process of edge detection and segmentation accurately find the location and areas of the real moving objects, and hence extracting moving information is very easy and accurate. The Combinatorial Hough Transform and voting accumulation based optical flow measures optical flow vectors accurately. The direction of moving objects is also accurately measured.

A Multiple Vehicle Object Detection Algorithm Using Feature Point Matching (특징점 매칭을 이용한 다중 차량 객체 검출 알고리즘)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.123-128
    • /
    • 2018
  • In this paper, we propose a multi-vehicle object detection algorithm using feature point matching that tracks efficient vehicle objects. The proposed algorithm extracts the feature points of the vehicle using the FAST algorithm for efficient vehicle object tracking. And True if the feature points are included in the image segmented into the 5X5 region. If the feature point is not included, it is processed as False and the corresponding area is blacked to remove unnecessary object information excluding the vehicle object. Then, the post processed area is set as the maximum search window size of the vehicle. And A minimum search window using the outermost feature points of the vehicle is set. By using the set search window, we compensate the disadvantages of the search window size of mean-shift algorithm and track vehicle object. In order to evaluate the performance of the proposed method, SIFT and SURF algorithms are compared and tested. The result is about four times faster than the SIFT algorithm. And it has the advantage of detecting more efficiently than the process of SUFR algorithm.

A Study on the automatic vehicle monitoring system based on computer vision technology (컴퓨터 비전 기술을 기반으로 한 자동 차량 감시 시스템 연구)

  • Cheong, Ha-Young;Choi, Chong-Hwan;Choi, Young-Gyu;Kim, Hyon-Yul;Kim, Tae-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • In this paper, we has proposed an automatic vehicle monitoring system based on computer vision technology. The real-time display system has displayed a system that can be performed in automatic monitoring and control while meeting the essential requirements of ITS. Another advantage has that for a powerful vehicle tracking, the main obstacle handing system, which has the shadow tracking of moving objects. In order to obtain all kinds of information from the tracked vehicle image, the vehicle must be clearly displayed on the surveillance screen. Over time, it's necessary to precisely control the vehicle, and a three-dimensional model-based approach has been also necessary. In general, each type of vehicle has represented by the skeleton of the object or wire frame model, and the trajectory of the vehicle can be measured with high precision in a 3D-based manner even if the system has not running in real time. In this paper, we has applied on segmentation method to vehicle, background, and shadow. The validity of the low level vehicle control tracker was also detected through speed tracking of the speeding car. In conclusion, we intended to improve the improved tracking method in the tracking control system and to develop the highway monitoring and control system.

3D Medical Image Segmentation Using Region-Growing Based Tracking (영역 확장 기반 추적을 이용한 3차원 의료 영상 분할 기법)

  • Ko S.;Yi J.;Lim J.;Ra J. B.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.239-246
    • /
    • 2000
  • In this paper. we propose a semi-automatic segmentation algorithm to extract organ in 3D medical data by using a manually segmentation result in a sing1e slice. Generally region glowing based tracking method consists of 3 steps object projection. seed extraction and boundary decision by region growing. But because the boundary between organs in medical data is vague, improper seeds make the boundary dig into the organ or extend to the false region. In the proposed algorithm seeds are carefully extracted to find suitable boundaries between organs after region growing. And the jagged boundary at low gradient region after region growing is corrected by post-processing using Fourier descriptor. Also two-path tracking make it possible to catch up newly appeared areas. The proposed algorithm provides satisfactory results in segmenting 1 mm distance kidneys from X-rav CT body image set of 82 slices.

  • PDF

Design of a Recognizing System for Vehicle's License Plates with English Characters

  • Xing, Xiong;Choi, Byung-Jae;Chae, Seog;Lee, Mun-Hee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.166-171
    • /
    • 2009
  • In recent years, video detection systems have been implemented in various infrastructures such as airport, public transportation, power generation system, water dam and so on. Recognizing moving objects in video sequence is an important problem in computer vision, with applications in several fields, such as video surveillance and target tracking. Segmentation and tracking of multiple vehicles in crowded situations is made difficult by inter-object occlusion. In the system described in this paper, the mean shift algorithm is firstly used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate or not. And then some characters in the license plate is recognized by using the fuzzy ARTMAP neural network, which is a relatively new architecture of the neural network family and has the capability to learn incrementally unlike the conventional BP network. We finally design a license plate recognition system using the mean shift algorithm and fuzzy ARTMAP neural network and show its performance via some computer simulations.

Segmentation of a moving object using binary phase extraction joint transform correlator technology (BPEJTC 기술을 이용한 이동 표적 영역화)

  • 원종권;차진우;이상이;류충상;김은수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.7
    • /
    • pp.88-96
    • /
    • 1997
  • As the need of automatized system has been increased recently together with the development of industrial and military technologies, the adaptive real-time target detection technologies that can be embedded on vehicles, planes, ships, robots and so on, are hgihly demanded. Accordingly, this paper proposes a novel approach to detect and segment the moving targets using the binary phase extraction joint transform correlator (BPEJTC), the advanced image subtraction filter and convex hull processing. The BPEJTC which was used as a target detection unit mainly for target tracking compensating the camera movement. The target region has been detected by processing the successful three frames using the advanced image subtraction filter, and has become more accurate by applying the developed convex hull filter. As shown by some experimental results, it is expected that the proposed approaches for compensation of the camera movement and segmentationof of target region, can be used for th emissile guiddance, aero surveillance, automatic inspectin system as well as the target detection unit of automatic target recognition system that request adaptive real-time processing.

  • PDF

A Hierarchical Semantic Video Object Tracking Algorithm Using Watershed Algorithm (Watershed 알고리즘을 사용한 계층적 이동체 추적 알고리즘)

  • 이재연;박현상;나종범
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1986-1994
    • /
    • 1999
  • In this paper, a semi-automatic approach is adopted to extract a semantic object from real-world video sequences human-aided segmentation for the first frame and automatic tracking for the remaining frames. The proposed algorithm has a hierarchical structure using watershed algorithm. Each hierarchy consists of 3 basic steps: First, seeds are extracted from the simplified current frame. Second, region growing bv a modified watershed algorithm is performed to get over-segmented regions. Finally, the segmented regions are classified into 3 categories, i.e., inside, outside or uncertain regions according to region probability values, which are acquired by the probability map calculated from an estimated motion-vector field. Then, for the remaining uncertain regions, the above 3 steps are repeated at lower hierarchies with less simplified frames until every region is classified into a certain region. The proposed algorithm provides prospective results in studio-quality sequences such as 'Claire', 'Miss America', 'Akiyo', and 'Mother and daughter'.

  • PDF

Realtime Theft Detection of Registered and Unregistered Objects in Surveillance Video (감시 비디오에서 등록 및 미등록 물체의 실시간 도난 탐지)

  • Park, Hyeseung;Park, Seungchul;Joo, Youngbok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1262-1270
    • /
    • 2020
  • Recently, the smart video surveillance research, which has been receiving increasing attention, has mainly focused on the intruder detection and tracking, and abandoned object detection. On the other hand, research on real-time detection of stolen objects is relatively insufficient compared to its importance. Considering various smart surveillance video application environments, this paper presents two different types of stolen object detection algorithms. We first propose an algorithm that detects theft of statically and dynamically registered surveillance objects using a dual background subtraction model. In addition, we propose another algorithm that detects theft of general surveillance objects by applying the dual background subtraction model and Mask R-CNN-based object segmentation technology. The former algorithm can provide economical theft detection service for pre-registered surveillance objects in low computational power environments, and the latter algorithm can be applied to the theft detection of a wider range of general surveillance objects in environments capable of providing sufficient computational power.

A Study of 3D World Reconstruction and Dynamic Object Detection using Stereo Images (스테레오 영상을 활용한 3차원 지도 복원과 동적 물체 검출에 관한 연구)

  • Seo, Bo-Gil;Yoon, Young Ho;Kim, Kyu Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.326-331
    • /
    • 2019
  • In the real world, there are both dynamic objects and static objects, but an autonomous vehicle or mobile robot cannot distinguish between them, even though a human can distinguish them easily. It is important to distinguish static objects from dynamic objects clearly to perform autonomous driving successfully and stably for an autonomous vehicle or mobile robot. To do this, various sensor systems can be used, like cameras and LiDAR. Stereo camera images are used often for autonomous driving. The stereo camera images can be used in object recognition areas like object segmentation, classification, and tracking, as well as navigation areas like 3D world reconstruction. This study suggests a method to distinguish static/dynamic objects using stereo vision for an online autonomous vehicle and mobile robot. The method was applied to a 3D world map reconstructed from stereo vision for navigation and had 99.81% accuracy.

Fast information extraction algorithm for object-based MPEG-4 application from MPEG-2 bit-streamaper (MPEG-2 비트열로부터 객체 기반 MPEG-4 응용을 위한 고속 정보 추출 알고리즘)

  • 양종호;원치선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.2109-2119
    • /
    • 2001
  • In this paper, a fast information extraction algorithm for object-based MPEG-4 application from MPEG-2 bit-steam is proposed. For object-based MPEG-4 conversion, we need to extract such information as object-image, shape-image, macro-block motion vector, and header information from MPEG-2 bit-stream. If we use the extracted information, fast conversion for object-based MPEG-4 is possible. The proposed object extraction algorithm has two important steps, namely the motion vectors extraction from MPEG-2 bit-stream and the watershed algorithm. The algorithm extracts objects using user\`s assistance in the intra frame and tracks then in the following inter frames. If we have an unsatisfactory result for a fast moving object, the user can intervene to correct the segmentation. The proposed algorithm consist of two steps, which are intra frame object extracts processing and inter frame tracking processing. Object extracting process is the step in which user extracts a semantic object directly by using the block classification and watersheds. Object tacking process is the step of the following the object in the subsequent frames. It is based on the boundary fitting method using motion vector, object-mask, and modified watersheds. Experimental results show that the proposed method can achieve a fast conversion from the MPEG-2 bit-stream to the object-based MPEG-4 input.

  • PDF