• Title/Summary/Keyword: Object Segmentation and Tracking

Search Result 102, Processing Time 0.028 seconds

Multiple Vehicle Tracking Algorithm Using Kalman Filter (칼만 필터를 이용한 다중 차량 추적 알고리즘)

  • 김형태;설성욱
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.955-958
    • /
    • 1998
  • This paper describes the algorithm which extracts moving vehicles from sequential images and tracks those vehicles using Kalman filter. This work is composed of a motion segmentation stage which extracts moving objects from sequential images and gets features of objects, and a motion estimation stage which estimates the position and the motion of moving objects using Kalman filter. In the motion estimation stage, applying to affine motion model we divided the Kalman filter into position filter and velocity filter to employ linear Kalman filter. Multi-target tracking requires a data association component that decides which measurement to use for updating the state of which object. We use pattern recognition method to solve this problem.

  • PDF

AUTOMATIC DETECTION OF OIL SPILLS WITH LEVEL SET SEGMENTATION TECHNIQUE FROM REMOTELY SENSED IMAGERY

  • Konstantinos, Karantzalos;Demetre, Argialas
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.126-129
    • /
    • 2006
  • The marine environment is under considerable threat from intentional or accidental oil spills, ballast water discharged, dredging and infilling for coastal development, and uncontrolled sewage and industrial wastewater discharges. Monitoring spills and illegal oil discharges is an important component in ensuring compliance with marine protection legislation and general protection of the coastal environments. For the monitoring task an image processing system is needed that can efficiently perform the detection and the tracking of oil spills and in this direction a significant amount of research work has taken place mainly with the use of radar (SAR) remote sensing data. In this paper the level set image segmentation technique was tested for the detection of oil spills. Level set allow the evolving curve to change topology (break and merge) and therefore boundaries of particularly intricate shapes can be extracted. Experimental results demonstrated that the level set segmentation can be used for the efficient detection and monitoring of oil spills, since the method coped with abrupt shape’s deformations and splits.

  • PDF

Real-Time Automatic Target Tracking Using the Centroid Moving Edges (이동경계의 무게중심에 의한 실시간 자동목표추적)

  • Bae, Jeoung-Hyo;Kim, Nam-Chul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.10
    • /
    • pp.1234-1243
    • /
    • 1988
  • In this paper, a target tracking algorithm using the centroid of moving edges is presented. It aims to avoid the difficulty of image segmentation in case of extracting the centroid from only one frame. The proposed algorithm can more easily segment the target than the conventional one in images with complex background. Moreover, it can track the target well when the target is occluded by an object. The result of applying it to a real-time target tracker is shown to be comparatively good.

  • PDF

An Intelligent Video Image Segmentation System using Watershed Algorithm (워터쉐드 알고리즘을 이용한 지능형 비디오 영상 분할 시스템)

  • Yang, Hwang-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.309-314
    • /
    • 2010
  • In this paper, an intelligent security camera over internet is proposed. Among ISC methods, watersheds based methods produce a good performance in segmentation accuracy. But traditional watershed transform has been suffered from over-segmentation due to small local minima included in gradient image that is input to the watershed transform. And a zone face candidates of detection using skin-color model. last step, face to check at face of candidate location using SVM method. It is extract of wavelet transform coefficient to the zone face candidated. Therefore, it is likely that it is applicable to read world problem, such as object tracking, surveillance, and human computer interface application etc.

Fast information extraction algorithm for object-based MPEG-4 conversion from MPEG-1,2 (MPEG-1,2로부터 객체 기반 MPEG-4 변환을 위한 고속 정보 추출 알고리즘)

  • 양종호;박성욱
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.91-102
    • /
    • 2004
  • In this paper, a fast information extraction algorithm for object-based MPEG-4 application from MPEG-1,2 is proposed. For object-based MPEG-4 conversion, we need to extract such information as object-image, shape-image, macro-block motion vector, and header information from MPEG-1,2 bit-stream. If we use the extracted information, fast conversion for object-based MPEG-4 is possible. The proposed object extraction algerian has two important steps, namely the motion vector extraction from MPEG-1,2 bit-stream and the watershed algerian The algorithm extracts objects using user's assistance in the intra frame and tracks then in the following inter frames. If we have an unsatisfactory result for a fast moving object the user can intervene to connect the segmentation. The proposed algorithm consist of two steps, which are intra frame object extracting processing and inter frame tracking processing. Object extracting process is the step in which user extracts a semantic object directly by using the block classification and watersheds. Object tracking process is the step of the following the object in the subsequent frames. It is based on the boundary fitting method using motion vector, object-mask and modified watersheds. Experimental results show that the proposed method can achieve a fast conversion from the MPEG-1,2 bit-stream to the object-based MPEG-4 input.

3D Visualization and Work Status Analysis of Construction Site Objects

  • Junghoon Kim;Insoo Jeong;Seungmo Lim;Jeongbin Hwang;Seokho Chi
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.447-454
    • /
    • 2024
  • Construction site monitoring is pivotal for overseeing project progress to ensure that projects are completed as planned, within budget, and in compliance with applicable laws and safety standards. Additionally, it seeks to improve operational efficiency for better project execution. To achieve this, many researchers have utilized computer vision technologies to conduct automatic site monitoring and analyze the operational status of equipment. However, most existing studies estimate real-world 3D information (e.g., object tracking, work status analysis) based only on 2D pixel-based information of images. This approach presents a substantial challenge in the dynamic environments of construction sites, necessitating the manual recalibration of analytical rules and thresholds based on the specific placement and the field of view of cameras. To address these challenges, this study introduces a novel method for 3D visualization and status analysis of construction site objects using 3D reconstruction technology. This method enables the analysis of equipment's operational status by acquiring 3D spatial information of equipment from single-camera images, utilizing the Sam-Track model for object segmentation and the One-2-3-45 model for 3D reconstruction. The framework consists of three main processes: (i) single image-based 3D reconstruction, (ii) 3D visualization, and (iii) work status analysis. Experimental results from a construction site video demonstrated the method's feasibility and satisfactory performance, achieving high accuracy in status analysis for excavators (93.33%) and dump trucks (98.33%). This research provides a more consistent method for analyzing working status, making it suitable for practical field applications and offering new directions for research in vision-based 3D information analysis. Future studies will apply this method to longer videos and diverse construction sites, comparing its performance with existing 2D pixel-based methods.

Context-Dependent Video Data Augmentation for Human Instance Segmentation (인물 개체 분할을 위한 맥락-의존적 비디오 데이터 보강)

  • HyunJin Chun;JongHun Lee;InCheol Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.5
    • /
    • pp.217-228
    • /
    • 2023
  • Video instance segmentation is an intelligent visual task with high complexity because it not only requires object instance segmentation for each image frame constituting a video, but also requires accurate tracking of instances throughout the frame sequence of the video. In special, human instance segmentation in drama videos has an unique characteristic that requires accurate tracking of several main characters interacting in various places and times. Also, it is also characterized by a kind of the class imbalance problem because there is a significant difference between the frequency of main characters and that of supporting or auxiliary characters in drama videos. In this paper, we introduce a new human instance datatset called MHIS, which is built upon drama videos, Miseang, and then propose a novel video data augmentation method, CDVA, in order to overcome the data imbalance problem between character classes. Different from the previous video data augmentation methods, the proposed CDVA generates more realistic augmented videos by deciding the optimal location within the background clip for a target human instance to be inserted with taking rich spatio-temporal context embedded in videos into account. Therefore, the proposed augmentation method, CDVA, can improve the performance of a deep neural network model for video instance segmentation. Conducting both quantitative and qualitative experiments using the MHIS dataset, we prove the usefulness and effectiveness of the proposed video data augmentation method.

3D Position Tracking for Moving objects using Stereo CCD Cameras (스테레오 CCD 카메라를 이용한 이동체의 실시간 3차원 위치추적)

  • Kwon, Hyuk-Jong;Bae, Sang-Keun;Kim, Byung-Guk
    • Spatial Information Research
    • /
    • v.13 no.2 s.33
    • /
    • pp.129-138
    • /
    • 2005
  • In this paper, a 3D position tracking algorithm for a moving objects using a stereo CCD cameras was proposed. This paper purposed the method to extract the coordinates of the moving objects. That is improve the operating and data processing efficiency. We were applied the relative orientation far the stereo CCD cameras and image coordinates extraction in the left and right images after the moving object segmentation. Also, it is decided on 3D position far moving objects using an acquired image coordinates in the left and right images. We were used independent relative orientation to decide the relative location and attitude of the stereo CCD cameras and RGB pixel values to segment the moving objects. To calculate the coordinates of the moving objects by space intersection. And, We conducted the experiment the system and compared the accuracy of the results.

  • PDF

An Improved Cast Shadow Removal in Object Detection (객체검출에서의 개선된 투영 그림자 제거)

  • Nguyen, Thanh Binh;Chung, Sun-Tae;Kim, Yu-Sung;Kim, Jae-Min
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.889-894
    • /
    • 2009
  • Accompanied by the rapid development of Computer Vision, Visual surveillance has achieved great evolution with more and more complicated processing. However there are still many problems to be resolved for robust and reliable visual surveillance, and the cast shadow occurring in motion detection process is one of them. Shadow pixels are often misclassified as object pixels so that they cause errors in localization, segmentation, tracking and classification of objects. This paper proposes a novel cast shadow removal method. As opposed to previous conventional methods, which considers pixel properties like intensity properties, color distortion, HSV color system, and etc., the proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the background scene. Then, the product of the outcomes of application determines whether the blob pixels in the foreground mask comes from object blob regions or shadow regions. The proposed method is simple but turns out practically very effective for Gaussian Mixture Model, which is verified through experiments.

  • PDF

Object-based Compression of Thermal Infrared Images for Machine Vision (머신 비전을 위한 열 적외선 영상의 객체 기반 압축 기법)

  • Lee, Yegi;Kim, Shin;Lim, Hanshin;Choo, Hyon-Gon;Cheong, Won-Sik;Seo, Jeongil;Yoon, Kyoungro
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.738-747
    • /
    • 2021
  • Today, with the improvement of deep learning technology, computer vision areas such as image classification, object detection, object segmentation, and object tracking have shown remarkable improvements. Various applications such as intelligent surveillance, robots, Internet of Things, and autonomous vehicles in combination with deep learning technology are being applied to actual industries. Accordingly, the requirement of an efficient compression method for video data is necessary for machine consumption as well as for human consumption. In this paper, we propose an object-based compression of thermal infrared images for machine vision. The input image is divided into object and background parts based on the object detection results to achieve efficient image compression and high neural network performance. The separated images are encoded in different compression ratios. The experimental result shows that the proposed method has superior compression efficiency with a maximum BD-rate value of -19.83% to the whole image compression done with VVC.