• Title/Summary/Keyword: Object Segmentation and Tracking

Search Result 102, Processing Time 0.027 seconds

Extraction of Workers and Heavy Equipment and Muliti-Object Tracking using Surveillance System in Construction Sites (건설 현장 CCTV 영상을 이용한 작업자와 중장비 추출 및 다중 객체 추적)

  • Cho, Young-Woon;Kang, Kyung-Su;Son, Bo-Sik;Ryu, Han-Guk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.397-408
    • /
    • 2021
  • The construction industry has the highest occupational accidents/injuries and has experienced the most fatalities among entire industries. Korean government installed surveillance camera systems at construction sites to reduce occupational accident rates. Construction safety managers are monitoring potential hazards at the sites through surveillance system; however, the human capability of monitoring surveillance system with their own eyes has critical issues. A long-time monitoring surveillance system causes high physical fatigue and has limitations in grasping all accidents in real-time. Therefore, this study aims to build a deep learning-based safety monitoring system that can obtain information on the recognition, location, identification of workers and heavy equipment in the construction sites by applying multiple object tracking with instance segmentation. To evaluate the system's performance, we utilized the Microsoft common objects in context and the multiple object tracking challenge metrics. These results prove that it is optimal for efficiently automating monitoring surveillance system task at construction sites.

The Background Segmentation of the Target Object for the Stereo Vision System (스테레오 비젼 시스템을 위한 표적물체의 배경 분리)

  • Ko, Jung Hwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 2008
  • In this paper, we propose a new method that separates background and foreground from stereo images. This method can be improved automatic target tracking system by using disparity map of the stereo vision system and background-separating mask, which can be obtained camera configuration parameters. We use disparity map and camera configuration parameters to separate object from background. Disparity map is made with block matching algorithm from stereo images. A morphology filter is used to compensate disparity error that can be caused by occlusion area. We could obtain a separated object from background when the proposed method was applied to real stereo cameras system.

Real-time 3D multi-pedestrian detection and tracking using 3D LiDAR point cloud for mobile robot

  • Ki-In Na;Byungjae Park
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.836-846
    • /
    • 2023
  • Mobile robots are used in modern life; however, object recognition is still insufficient to realize robot navigation in crowded environments. Mobile robots must rapidly and accurately recognize the movements and shapes of pedestrians to navigate safely in pedestrian-rich spaces. This study proposes real-time, accurate, three-dimensional (3D) multi-pedestrian detection and tracking using a 3D light detection and ranging (LiDAR) point cloud in crowded environments. The pedestrian detection quickly segments a sparse 3D point cloud into individual pedestrians using a lightweight convolutional autoencoder and connected-component algorithm. The multi-pedestrian tracking identifies the same pedestrians considering motion and appearance cues in continuing frames. In addition, it estimates pedestrians' dynamic movements with various patterns by adaptively mixing heterogeneous motion models. We evaluate the computational speed and accuracy of each module using the KITTI dataset. We demonstrate that our integrated system, which rapidly and accurately recognizes pedestrian movement and appearance using a sparse 3D LiDAR, is applicable for robot navigation in crowded spaces.

Modified energy function of the active contour model for the tracking of deformable objects

  • Choi, Jeong, Ju;Kim, Jong-Shik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.47-50
    • /
    • 2006
  • An active contour model has been used to detect the edges in a still image. In order to apply the active contour model to edge detection, the energy function which consists of internal, external and image energies should be defined. After defining the energy function, the edge of an object is detected through minimization of the value of the energy function. In this paper, the modified internal energy function is proposed to improve the convergence of the energy function when the active contour model is applied to the tracking of deformable objects using the greedy algorithm. In order to show the performance of the proposed energy function, experiments were carried out for the still and animated images.

A Shadow Region Suppression Method using Intensity Projection and Converting Energy to Improve the Performance of Probabilistic Background Subtraction (확률기반 배경제거 기법의 향상을 위한 밝기 사영 및 변환에너지 기반 그림자 영역 제거 방법)

  • Hwang, Soon-Min;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • The segmentation of moving object in video sequence is a core technique of intelligent image processing system such as video surveillance, traffic monitoring and human tracking. A typical method to segment a moving region from the background is the background subtraction. The steps of background subtraction involve calculating a reference image, subtracting new frame from reference image and then thresholding the subtracted result. One of famous background modeling is Gaussian mixture model (GMM). Even though the method is known efficient and exact, GMM suffers from a problem that includes false pixels in ROI (region of interest), specifically shadow pixels. These false pixels cause fail of the post-processing tasks such as tracking and object recognition. This paper presents a method for removing false pixels included in ROT. First, we subdivide a ROI by using shape characteristics of detected objects. Then, a method is proposed to classify pixels from using histogram characteristic and comparing difference of energy that converts the color value of pixel into grayscale value, in order to estimate whether the pixels belong to moving object area or shadow area. The method is applied to real video sequence and the performance is verified.

Computation ally Efficient Video Object Segmentation using SOM-Based Hierarchical Clustering (SOM 기반의 계층적 군집 방법을 이용한 계산 효율적 비디오 객체 분할)

  • Jung Chan-Ho;Kim Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.74-86
    • /
    • 2006
  • This paper proposes a robust and computationally efficient algorithm for automatic video object segmentation. For implementing the spatio-temporal segmentation, which aims for efficient combination of the motion segmentation and the color segmentation, an SOM-based hierarchical clustering method in which the segmentation process is regarded as clustering of feature vectors is employed. As results, problems of high computational complexity which required for obtaining exact segmentation results in conventional video object segmentation methods, and the performance degradation due to noise are significantly reduced. A measure of motion vector reliability which employs MRF-based MAP estimation scheme has been introduced to minimize the influence from the motion estimation error. In addition, a noise elimination scheme based on the motion reliability histogram and a clustering validity index for automatically identifying the number of objects in the scene have been applied. A cross projection method for effective object tracking and a dynamic memory to maintain temporal coherency have been introduced as well. A set of experiments has been conducted over several video sequences to evaluate the proposed algorithm, and the efficiency in terms of computational complexity, robustness from noise, and higher segmentation accuracy of the proposed algorithm have been proved.

Touching Pigs Segmentation and Tracking Verification Using Motion Information (움직임 정보를 이용한 근접 돼지 분리와 추적 검증)

  • Park, Changhyun;Sa, Jaewon;Kim, Heegon;Chung, Yongwha;Park, Daihee;Kim, Hakjae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.4
    • /
    • pp.135-144
    • /
    • 2018
  • The domestic pigsty environment is highly vulnerable to the spread of respiratory diseases such as foot-and-mouth disease because of the small space. In order to manage this issue, a variety of studies have been conducted to automatically analyze behavior of individual pigs in a pig pen through a video surveillance system using a camera. Even though it is required to correctly segment touching pigs for tracking each pig in complex situations such as aggressive behavior, detecting the correct boundaries among touching pigs using Kinect's depth information of lower accuracy is a challenging issue. In this paper, we propose a segmentation method using motion information of the touching pigs. In addition, our proposed method can be applied for detecting tracking errors in case of tracking individual pigs in the complex environment. In the experimental results, we confirmed that the touching pigs in a pig farm were separated with the accuracy of 86%, and also confirmed that the tracking errors were detected accurately.

An Effective Moving Cast Shadow Removal in Gray Level Video for Intelligent Visual Surveillance (지능 영상 감시를 위한 흑백 영상 데이터에서의 효과적인 이동 투영 음영 제거)

  • Nguyen, Thanh Binh;Chung, Sun-Tae;Cho, Seongwon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.420-432
    • /
    • 2014
  • In detection of moving objects from video sequences, an essential process for intelligent visual surveillance, the cast shadows accompanying moving objects are different from background so that they may be easily extracted as foreground object blobs, which causes errors in localization, segmentation, tracking and classification of objects. Most of the previous research results about moving cast shadow detection and removal usually utilize color information about objects and scenes. In this paper, we proposes a novel cast shadow removal method of moving objects in gray level video data for visual surveillance application. The proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the corresponding regions in the background scene. Then, the product of the outcomes of application determines moving object blob pixels from the blob pixels in the foreground mask. The minimal rectangle regions containing all blob pixles classified as moving object pixels are extracted. The proposed method is simple but turns out practically very effective for Adative Gaussian Mixture Model-based object detection of intelligent visual surveillance applications, which is verified through experiments.

Real-time Water Quality Monitoring System Using Vision Camera and Multiple Objects Tracking Method (비젼 카메라와 다중 객체 추적 방법을 이용한 실시간 수질 감시 시스템)

  • Yang, Won-Keun;Lee, Jung-Ho;Cho, Ik-Hwan;Jin, Ju-Kyong;Jeong, Dong-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.401-410
    • /
    • 2007
  • In this paper, we propose water quality monitoring system using vision camera and multiple objects tracking method. The proposed system analyzes object individually using vision camera unlike monitoring system using sensor method. The system using vision camera consists of individual object segmentation part and objects tracking part based on interrelation between successive frames. For real-time processing, we make background image using non-parametric estimation and extract objects using background image. If we use non-parametric estimation, objects extraction method can reduce large amount of computation complexity, as well as extract objects more effectively. Multiple objects tracking method predicts next motion using moving direction, velocity and acceleration of individual object then carries out tracking based on the predicted motion. And we apply exception handling algorithms to improve tracking performance. From experiment results under various conditions, it shows that the proposed system can be available for real-time water quality monitoring system since it has very short processing time and correct multiple objects tracking.

Object Tracking in HEVC Bitstreams (HEVC 스트림 상에서의 객체 추적 방법)

  • Park, Dongmin;Lee, Dongkyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.449-463
    • /
    • 2015
  • Video object tracking is important for variety of applications, such as security, video indexing and retrieval, video surveillance, communication, and compression. This paper proposes an object tracking method in HEVC bitstreams. Without pixel reconstruction, motion vector (MV) and size of prediction unit in the bitstream are employed in an Spatio-Temporal Markov Random Fields (ST-MRF) model which represents the spatial and temporal aspects of the object's motion. Coefficient-based object shape adjustment is proposed to solve the over-segmentation and the error propagation problems caused in other methods. In the experimental results, the proposed method provides on average precision of 86.4%, recall of 79.8% and F-measure of 81.1%. The proposed method achieves an F-measure improvement of up to 9% for over-segmented results in the other method even though it provides only average F-measure improvement of 0.2% with respect to the other method. The total processing time is 5.4ms per frame, allowing the algorithm to be applied in real-time applications.