• Title/Summary/Keyword: Object Retrieval

Search Result 357, Processing Time 0.032 seconds

Content-Based Image Retrieval System using Feature Extraction of Image Objects (영상 객체의 특징 추출을 이용한 내용 기반 영상 검색 시스템)

  • Jung Seh-Hwan;Seo Kwang-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.3
    • /
    • pp.59-65
    • /
    • 2004
  • This paper explores an image segmentation and representation method using Vector Quantization(VQ) on color and texture for content-based image retrieval system. The basic idea is a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture space. These schemes are used for object-based image retrieval. Features for image retrieval are three color features from HSV color model and five texture features from Gray-level co-occurrence matrices. Once the feature extraction scheme is performed in the image, 8-dimensional feature vectors represent each pixel in the image. VQ algorithm is used to cluster each pixel data into groups. A representative feature table based on the dominant groups is obtained and used to retrieve similar images according to object within the image. The proposed method can retrieve similar images even in the case that the objects are translated, scaled, and rotated.

Content-Based Retrieval for Region of Interest Using Maximum Bin Color (최대 빈 색상 정보를 이용한 관심영역의 검색)

  • 주재일;이종설;조위덕;문영식
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.207-210
    • /
    • 2002
  • In this paper, content-based retrieval for region of interest(ROI) has been described, using maximum bin color. From a given query image, the object of interest is selected by a user. Using maximum bin color of the selected object, candidate regions are extracted from database images. The final regions of interest are determined by comparing the normalized histograms of the selected object and each candidate region.

  • PDF

Hybrid Video Information System Supporting Content-based Retrieval and Similarity Retrieval (비디오의 의미검색과 유사성검색을 위한 통합비디오정보시스템)

  • Yun, Mi-Hui;Yun, Yong-Ik;Kim, Gyo-Jeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2031-2041
    • /
    • 1999
  • In this paper, we present the HVIS (Hybrid Video Information System) which bolsters up meaning retrieval of all the various users by integrating feature-based retrieval and annotation-based retrieval of unformatted formed and massive video data. HVIS divides a set of video into video document, sequence, scene and object to model the metadata and suggests the Two layered Hybrid Object-oriented Metadata Model(THOMM) which is composed of raw-data layer for physical video stream, metadata layer to support annotation-based retrieval, content-based retrieval, and similarity retrieval. Grounded on this model, we presents the video query language which make the annotation-based query, content-based query and similar query possible and Video Query Processor to process the query and query processing algorithm. Specially, We present the similarity expression to appear degree of similarity which considers interesting of user. The proposed system is implemented with Visual C++, ActiveX and ORACLE.

  • PDF

Multi-Object Detection Using Image Segmentation and Salient Points (영상 분할 및 주요 특징 점을 이용한 다중 객체 검출)

  • Lee, Jeong-Ho;Kim, Ji-Hun;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.2
    • /
    • pp.48-55
    • /
    • 2008
  • In this paper we propose a novel method for image retrieval system using image segmentation and salient points. The proposed method consists of four steps. In the first step, images are segmented into several regions by JSEG algorithm. In the second step, for the segmented regions, dominant colors and the corresponding color histogram are constructed. By using dominant colors and color histogram, we identify candidate regions where objects may exist. In the third step, real object regions are detected from candidate regions by SIFT matching. In the final step, we measure the similarity between the query image and DB image by using the color correlogram technique. Color correlogram is computed in the query image and object region of DB image. By experimental results, it has been shown that the proposed method detects multi-object very well and it provides better retrieval performance compared with object-based retrieval systems.

A Content-Based Image Retrieval using Object Segmentation Method (물체 분할 기법을 이용한 내용기반 영상 검색)

  • 송석진;차봉현;김명호;남기곤;이상욱;주재흠
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Various methods have been studying to maintain and apply the multimedia inform abruptly increasing over all social fields, in recent years. For retrieval of still images, we is implemented content-based image retrieval system in this paper that make possible to retrieve similar objects from image database after segmenting query object from background if user request query. Query image is processed median filtering to remove noise first and then object edge is detected it by canny edge detection. And query object is segmented from background by using convex hull. Similarity value can be obtained by means of histogram intersection with database image after securing color histogram from segmented image. Also segmented image is processed gray convert and wavelet transform to extract spacial gray distribution and texture feature. After that, Similarity value can be obtained by means of banded autocorrelogram and energy. Final similar image can be retrieved by adding upper similarity values that it make possible to not only robust in background but also better correct object retrieval by using object segmentation method.

  • PDF

Retrieval Performance of XML Documents Using Object-Relational Databases (객체-관계형 데이터베이스에 의한 XML문헌의 검색성능 평가)

  • Kim, Hee-Sop
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.2
    • /
    • pp.189-210
    • /
    • 2004
  • The purpose of this study is to evaluate the performance of XML retrieval based on ORDBMSs(Object-Relational Database Management Systems) approach. This paper describes indexing and retrieval methods for XML documents and the methodologies of experiments at INEX(Initiative for the Evaluation of XML retrieval). Like any other traditional information retrieval experiment, the test collection was consists of documents, topics/queries, task, relevance assessments and evaluation. EXIMA$^{TM}$ Supply, a kind of native XML DB based on ORDBMS technologies, is used for this experiment. Although this approach has many benefits, for example, no delay in storing and searching XML documents. but it showed relatively disappointed retrieval performance at INEX 2002. This result may caused since the given topics had to be decomposed and modified to be processed by the XPath processor, and during this modification the original meaning of topics can be changed inevitably and some important information nay pass over.r.

Novel Intent based Dimension Reduction and Visual Features Semi-Supervised Learning for Automatic Visual Media Retrieval

  • kunisetti, Subramanyam;Ravichandran, Suban
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.230-240
    • /
    • 2022
  • Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.

Object-Oriented Retrieval Framework to Construct the Reuse-Supporting Systems (재사용 시스템 개발을 위한 객체지향 검식 프레임워크)

  • Kim, Jung-A;Moon, Chung-Ryeal;Kim, Seung-Tae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.5
    • /
    • pp.711-720
    • /
    • 1995
  • This paper describes in object-oriented retrieval framework that is generally designed to store and retrieve the reusable components from the library regardless of the underlying representation of the library. We propose a retrieval framework on visual space so that reuser can identify their location at the library without any previous information of library structure. They can decide the directions of retrieval with the results displayed on the visual space and interact with the library using the defined simple retrieval operation that can assess the library information object. For doing this, 4I model was proposed. Librarian as well as reuser can easily construct the new library on the visual environment. It is the process to give the semantic of the information object. This paper discusses the basic concepts of our 4I model and explains each constituent of our model and shows a simple example of the system.

  • PDF

Content-based Image Retrieval Using Color and Chain Code (색상과 Chain Code를 이용한 내용기반 영상검색)

  • 황병곤;정성호;이상열
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.2
    • /
    • pp.9-15
    • /
    • 2000
  • In this paper, we proposed a content-based image retrieval method using color and object's complexity for indexing of image database. Generally, the retrieval methods using color feature can not sufficiently include the spatial information in the image. So they are reduced retrieval efficiency. Then we combined object's complexity which extracted from chain code and the conventional color feature. As a result, experiments shooed that the proposed method which considers the shape feature improved performance in conducting content-based search.

  • PDF

Efficient Object-based Image Retrieval Method using Color Features from Salient Regions

  • An, Jaehyun;Lee, Sang Hwa;Cho, Nam Ik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.229-236
    • /
    • 2017
  • This paper presents an efficient object-based color image-retrieval algorithm that is suitable for the classification and retrieval of images from small to mid-scale datasets, such as images in PCs, tablets, phones, and cameras. The proposed method first finds salient regions by using regional feature vectors, and also finds several dominant colors in each region. Then, each salient region is partitioned into small sub-blocks, which are assigned 1 or 0 with respect to the number of pixels corresponding to a dominant color in the sub-block. This gives a binary map for the dominant color, and this process is repeated for the predefined number of dominant colors. Finally, we have several binary maps, each of which corresponds to a dominant color in a salient region. Hence, the binary maps represent the spatial distribution of the dominant colors in the salient region, and the union (OR operation) of the maps can describe the approximate shapes of salient objects. Also proposed in this paper is a matching method that uses these binary maps and which needs very few computations, because most operations are binary. Experiments on widely used color image databases show that the proposed method performs better than state-of-the-art and previous color-based methods.