• 제목/요약/키워드: Object Removal

검색결과 196건 처리시간 0.023초

비디오 감시 시스템에서 실시간 움직이는 물체 검출 및 그림자 제거 (Real-Time Moving Object Detection and Shadow Removal in Video Surveillance System)

  • 이영숙;정완영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.574-578
    • /
    • 2009
  • 정지 영상이나 비디오 영상 시퀀스에서 배경 영상으로부터 움직이는 관심 물체를 구별하기 위한 실시간 물체 검출은 물체의 위치 추적과 인식에 있어 필수적인 단계이다. 물체 분할 후에 그림자 영역이 움직이는 물체 영역에 포함되어지기 때문에 그림자는 물체의 일부분 혹은 움직이는 물체로 오분류될 수 있다. 이러한 이유로 그림자 제거 알고리즘은 움직이는 물체 검출 및 추적 시스템의 결과에 중요한 역할을 한다. 이 문제점들을 해결하기 위해 본 논문에서는 움직이는 물체의 특징과 색상공간에서 그림자의 특징에 기반을 둔 정확한 물체 검출과 그림자 제거 알고리즘을 제안한다. 실험결과는 제안 알고리즘이 실험 영상에서 물체 검출과 그림자 제거에 대해 효과적인 것을 알 수가 있다.

  • PDF

효과적인 이동물체 추적을 위한 색도 영상과 엔트로피 기반의 그림자 제거 (Shadow Removal Based on Chromaticity and Entropy for Efficient Moving Object Tracking)

  • 박기홍
    • 한국항행학회논문지
    • /
    • 제18권4호
    • /
    • pp.387-392
    • /
    • 2014
  • 최근 지능형 비디오 감시를 위한 다양한 연구가 제안되고 있음에도 CCTV 영상에서 이상 징후 판단이 사람에 의해 이루어지고 있어 상황인식을 위한 방법 및 연구가 필요하다. 본 논문에서는 이동물체 검출 및 추적을 위해 RGB 칼라 모델 기반의 색도 영상과 엔트로피 영상을 도출하여 그림자 제거를 수행한 후 이동물체를 추적하는 방법을 제안한다. 이동물체 검출을 위해 잡음 및 주위환경변화에 민감하지만 순간적으로 발생되는 상황인지 환경에서 효과적인 차영상 모델을 적용하였다. 검출한 이동물체 영역에서 RGB 채널의 색도 영상을 기반으로 첫 번째 그림자 후보 영역을 선정하였고, 그레이레벨에서 엔트로피를 계산하여 두 번째 그림자 후보 영역을 추정하여 그림자를 제거하였다. 제안하는 방법의 타당성을 위해 고속도로에서 주행하는 자동차들을 대상으로 실험하였고, 실험 결과 색상과 엔트로피를 이용한 그림자를 제거와 이동물체 추적이 효과적으로 수행됨을 확인하였다.

지능 영상 감시를 위한 흑백 영상 데이터에서의 효과적인 이동 투영 음영 제거 (An Effective Moving Cast Shadow Removal in Gray Level Video for Intelligent Visual Surveillance)

  • 응웬탄빈;정선태;조성원
    • 한국멀티미디어학회논문지
    • /
    • 제17권4호
    • /
    • pp.420-432
    • /
    • 2014
  • In detection of moving objects from video sequences, an essential process for intelligent visual surveillance, the cast shadows accompanying moving objects are different from background so that they may be easily extracted as foreground object blobs, which causes errors in localization, segmentation, tracking and classification of objects. Most of the previous research results about moving cast shadow detection and removal usually utilize color information about objects and scenes. In this paper, we proposes a novel cast shadow removal method of moving objects in gray level video data for visual surveillance application. The proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the corresponding regions in the background scene. Then, the product of the outcomes of application determines moving object blob pixels from the blob pixels in the foreground mask. The minimal rectangle regions containing all blob pixles classified as moving object pixels are extracted. The proposed method is simple but turns out practically very effective for Adative Gaussian Mixture Model-based object detection of intelligent visual surveillance applications, which is verified through experiments.

Fuzzy Based Shadow Removal and Integrated Boundary Detection for Video Surveillance

  • Niranjil, Kumar A.;Sureshkumar, C.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2126-2133
    • /
    • 2014
  • We present a scalable object tracking framework, which is capable of removing shadows and tracking the people. The framework consists of background subtraction, fuzzy based shadow removal and boundary tracking algorithm. This work proposes a general-purpose method that combines statistical assumptions with the object-level knowledge of moving objects, apparent objects, and shadows acquired in the processing of the previous frames. Pixels belonging to moving objects and shadows are processed differently in order to supply an object-based selective update. Experimental results demonstrate that the proposed method is able to track the object boundaries under significant shadows with noise and background clutter.

효과적인 이동물체 추적을 위한 색도와 밝기 왜곡 기반의 그림자 제거 (Shadow Removal based on Chromaticity and Brightness Distortion for Effective Moving Object Tracking)

  • 김연희;김재호;김윤호
    • 한국정보전자통신기술학회논문지
    • /
    • 제8권4호
    • /
    • pp.249-256
    • /
    • 2015
  • 디지털 영상에서 그림자는 영산 분석에 부정적인 영향을 미칠 수 있기 때문에 효과적으로 이동물체 검출 및 추적을 위해서는 그림자 제거가 필수적인 전처리 과정이다. 본 논문에서는 색도 영상, 밝기 변화 및 이동물체의 그림자 방향 특성을 이용해 그림자를 제거하는 알고리즘을 제안하였다. 제안하는 방법은 크게 두 단계로 구성이 되며, 첫 번째 단계로 현재 영상의 색도와 밝기 변화를 이용해 그림자 후보 영역을 제거하고, 두 번째 단계에서 이동물체의 최하위 화소 위치를 구하여그림자의 방향에 해당하는 그림자를 제거하였다. 그림자는 이동물체의 아래 영역에 위치하기 때문에 이동물체의 최하위 화소와 그림자의 방향을 알면 그림자를 제거할 수 있다. 실험 결과, 실제 이동물체 영역과 그림자 영역의 분리가 효과적으로 이루어졌으며, 이동물체 검출 및 추적 성능이 향상되었다.

Adaptive Object-Region-Based Image Pre-Processing for a Noise Removal Algorithm

  • Ahn, Sangwoo;Park, Jongjoo;Luo, Linbo;Chong, Jongwha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권12호
    • /
    • pp.3166-3179
    • /
    • 2013
  • A pre-processing system for adaptive noise removal is proposed based on the principle of identifying and filtering object regions and background regions. Human perception of images depends on bright, well-focused object regions; these regions can be treated with the best filters, while simpler filters can be applied to other regions to reduce overall computational complexity. In the proposed method, bright region segmentation is performed, followed by segmentation of object and background regions. Noise in dark, background, and object regions is then removed by the median, fast bilateral, and bilateral filters, respectively. Simulations show that the proposed algorithm is much faster than and performs nearly as well as the bilateral filter (which is considered a powerful noise removal algorithm); it reduces computation time by 19.4 % while reducing PSNR by only 1.57 % relative to bilateral filtering. Thus, the proposed algorithm remarkably reduces computation while maintaining accuracy.

기술도해 생성을 위한 가시화 데이터 은선 제거 알고리즘 (Hidden Line Removal for Technical Illustration Based on Visualization Data)

  • 심현수;최영;양상욱
    • 한국CDE학회논문집
    • /
    • 제11권6호
    • /
    • pp.455-463
    • /
    • 2006
  • Hidden line removal(HLR) algorithms can be devised either in the image space or in the object space. This paper describes a hidden line removal algorithm in the object space specifically for the CAD viewer data. The approach is based on the Appel's 'Quantitative Invisibility' algorithm and fundamental concept of 'back face culling'. Input data considered in this algorithm can be distinguished from those considered for HLR algorithm in general. The original QI algorithm can be applied for the polyhedron models. During preprocessing step of our proposed algorithm, the self intersecting surfaces in the view direction are divided along the silhouette curves so that the QI algorithm can be applied. By this way the algorithm can be used for any triangulated freeform surfaces. A major advantage of this algorithm is the applicability to general CAD models and surface-based visualization data.

안개 제거에 의한 객체 검출 성능 향상 방법 (A Framework for Object Detection by Haze Removal)

  • 김상균;최경호;박순영
    • 전자공학회논문지
    • /
    • 제51권5호
    • /
    • pp.168-176
    • /
    • 2014
  • 영상 시퀀스로부터 움직이는 객체의 검출은 비디오 감시, 교통 모니터링 및 분석, 사람 검출 및 추적 등에서 가장 기본적이며 중요한 분야이다. 안개와 같은 환경적 요인에 의하여 화질이 저하된 영상 속에서 움직이는 객체를 검출하는 일은 매우 어렵다. 특히, 안개는 주변 물체의 색상을 모두 비슷하게 만들고 채도를 떨어뜨려 배경으로부터 객체를 구별하기 힘들게 만든다. 이런 이유로 안개 영상 속에서 객체 검출 성능은 매우 낮으며 신뢰할 수 없는 결과를 나타내고 있다. 본 논문은 안개와 같은 환경적 요인을 제거하고 객체의 검출 성능을 높이기 위한 방법으로 안개 지수를 기반으로 안개 유무를 판단하고, Dark Channel Prior을 이용하여 안개 영상의 전달량을 추정하고 안개가 제거된 영상으로 복원하였으며 가우시안 혼합 모델을 이용한 배경 차분 방법을 이용하여 객체를 검출하였다. 그리고 제안된 방법의 성능을 비교하기 위해 안개 제거 전과 후의 영상에 대한 Recall 과 Precision을 측정하여 안개 제거에 따른 성능 향상 정도를 수치화하여 비교하였다. 결과적으로 안개 제거 후 영상의 가시성이 매우 향상되었으며 객체 검출 성능이 매우 향상됨을 알 수 있었다.

카메라 기반 객체의 위치인식을 위한 왜곡제거 및 오검출 필터링 기법 (Distortion Removal and False Positive Filtering for Camera-based Object Position Estimation)

  • 진실;송지민;최지호;진용식;정재진;이상준
    • 대한임베디드공학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2024
  • Robotic arms have been widely utilized in various labor-intensive industries such as manufacturing, agriculture, and food services, contributing to increasing productivity. In the development of industrial robotic arms, camera sensors have many advantages due to their cost-effectiveness and small sizes. However, estimating object positions is a challenging problem, and it critically affects to the robustness of object manipulation functions. This paper proposes a method for estimating the 3D positions of objects, and it is applied to a pick-and-place task. A deep learning model is utilized to detect 2D bounding boxes in the image plane, and the pinhole camera model is employed to compute the object positions. To improve the robustness of measuring the 3D positions of objects, we analyze the effect of lens distortion and introduce a false positive filtering process. Experiments were conducted on a real-world scenario for moving medicine bottles by using a camera-based manipulator. Experimental results demonstrated that the distortion removal and false positive filtering are effective to improve the position estimation precision and the manipulation success rate.

물체의 컬러 정보를 이용한 그림자 제거 기법의 성능 향상 (Performance Enhancement of Shadow Removal Algorithms Using Color Information of Objects)

  • 김희상;김지홍;최두현
    • 한국멀티미디어학회논문지
    • /
    • 제12권7호
    • /
    • pp.941-946
    • /
    • 2009
  • 영상 처리 기술에 기반한 경비 및 보안 감시 시스템이 보급되면서, 영상으로부터 정확하게 대상 물체를 추출하는 기술의 필요성이 증대되었다. 조명이 시시각각 변하는 경우 물체를 정확하게 추출하느냐는 더욱 어려운 문제가 된다. 영상으로부터 그림자를 제거한 물체를 추출해내기 위해서 많은 노력이 있었다. 여러 그림자 제거 방법들이 공통적으로 가지는 문제점이 있는데, 그림자 제거 시 물체의 일부도 손상시킨다는 점이다. 본 논문에서는 이런 문제점을 보완하기 위해서 그림자 제거 후 컬러 정보를 이용하여 물체의 손상된 영역을 복원하는 방법을 제안한다. 다양한 환경으로부터 획득한 영상에 제안한 방법을 적용하여 그 타당성을 검증하였다.

  • PDF