• Title/Summary/Keyword: Object Feature Extraction

Search Result 266, Processing Time 0.028 seconds

Classification of Hyperspectral Images based on Gravity type Model (중력모델에 기반한 하이퍼스텍트럴 영상 분류)

  • Byun, Young-Gi;Lee, Jeong-Ho;Kim, Yong-Min;Kim, Yong-Il
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.183-186
    • /
    • 2007
  • Hyperspectral remote sensing data contain plenty of information about objects, which makes object classification more precise. Over the past several years, different algorithms for the classification of hyperspectral remote sensing images have been developed. In this study, we proposed method based on absorption band extraction and Gravity type model to solve hyperspectral image classification problem. In contrast to conventional methods that are based on correlation techniques, this method is simple and more effective. The proposed approach was tested to evaluate its effectiveness. The evaluation was done by comparing the results of preexiting SFF(Spectral Feature Fitting) classification method. The evaluation results showed the proposed approach has a good potential in the classification of hyperspectral images.

  • PDF

Design of a Korean Speech Recognition Platform (한국어 음성인식 플랫폼의 설계)

  • Kwon Oh-Wook;Kim Hoi-Rin;Yoo Changdong;Kim Bong-Wan;Lee Yong-Ju
    • MALSORI
    • /
    • no.51
    • /
    • pp.151-165
    • /
    • 2004
  • For educational and research purposes, a Korean speech recognition platform is designed. It is based on an object-oriented architecture and can be easily modified so that researchers can readily evaluate the performance of a recognition algorithm of interest. This platform will save development time for many who are interested in speech recognition. The platform includes the following modules: Noise reduction, end-point detection, met-frequency cepstral coefficient (MFCC) and perceptually linear prediction (PLP)-based feature extraction, hidden Markov model (HMM)-based acoustic modeling, n-gram language modeling, n-best search, and Korean language processing. The decoder of the platform can handle both lexical search trees for large vocabulary speech recognition and finite-state networks for small-to-medium vocabulary speech recognition. It performs word-dependent n-best search algorithm with a bigram language model in the first forward search stage and then extracts a word lattice and restores each lattice path with a trigram language model in the second stage.

  • PDF

Moving object Tracking Using U and FI

  • Song, Hag-hyun;Kwak, Yoon-shik;Kim, Yoon-ho;Ryu, Kwang-Ryol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.7
    • /
    • pp.1126-1132
    • /
    • 2002
  • In this paper, we propose a new scheme of motion tracking based on fuzzy inference (Fl) and wavelet transform (WT) from image sequences. First, we present a WT to segment a feature extraction of dynamic image . The coefficient matrix for 2-level DWT tent to be clustered around the location of Important features in the images, such as edge discontinuities, peaks, and corners. But these features are time varying owing to the environment conditions. Second, to reduce the spatio-temperal error, We develop a fuzzy inference algorithm. Some experiments are performed 0 testify the validity and applicability of the proposed system As a result, proposed method is relatively simple compared with the traditional space domain method. It is also well suited for motion tracking under the conditions of variation of illumination.

Moving Object Feature Extraction for the Gesture Interaction (제스처 인터렉션 지원을 위한 동적 사용자 특징 추출)

  • Lee, Jea-Sung;Choi, Yoo-Joo
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.909-914
    • /
    • 2007
  • 본 논문은 조명변화가 심한 주변환경에서 동적객체의 특징정보를 안정적으로 추출하는 기법을 제시한다. 제안기법에서는 우선 조명변화의 효과를 최소화 하기위해 HSI 컬러공간에서 색상(Hue) 강도 및 색상기울기에 대한 평균값과 표준편차 값으로 이루어진 배경모델을 생성한다. 실시간으로 입력되는 동적 객체를 포함한 연속영상에 대하여 각 화소에 대한 색상(Hue) 성분을 추출하고 이웃 화소와의 색상성분에 대한 기울기 크기를 계산한다. 이를 기구축된 배경모델과 비교하여 그 차분값이 일정 임계값을 초과하는 경우 동적 객체의 영역으로 판별한다. 마지막으로 모폴로지 연산을 수행하여 배경영상의 노이즈 영역을 제거한다. 본 논문에서는 기존 동적객체 추출기법과 제안기법을 핸드 트래킹과 전체 몸 움직임 추적의 비교실험을 통하여 제안 기법의 안정성을 보였다. 제안 기법은 극심한 조명변화에 강건하게 동적 객체의 영역정보를 실시간 추출하였다.

  • PDF

A Feature-Extraction Method based on shapes of 3D Object (3차원 객체의 모양에 기반한 특징추출 기법)

  • 신준섭;황수찬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.70-72
    • /
    • 2001
  • 최근 멀티미디어 응용의 증가에 따라 그래픽 데이터를 위한 내용 기반 검색 기술에 대한 연구가 활발히 진행되고 있다. 또한 인터넷 응용분야에서 3차원 그래픽 데이터베이스 사용의 필요성이 대두되고 활용되고 있다. 대부분의 3차원 그래픽 시스템은 사용자에게 그래픽은 검색이 대상이 아니라 단순히 보여주는 역할로 주로 사용되고 있다. 3차원 그래픽객체는 어떤 객체들로 구성되여 있으며 그들의 크기는 어떠한지 등의 정보를 포함하고 있다. 따라서 3차원 그래픽 객체에서는 2차원 그래픽 객체에서는 2차원 이미지보다 의미객체에 대한 정확한 정보를 더 많이 얻어 낼 수 있다. 이러한 사실 때문에 2차원 이미지의 특징추출의 방법과는 다른 형식의 접근이 필요하다. 본 논문에서는 3차원 그래픽으로 모델링 된 3차원 객체들을 대상으로 객체가 이루는 X, Y, Z축상의 비율과 윤곽형태에 대한 SPBT(Space Partitioning Binary Tree)의 결과값으로 특징을 추출하고 샘플 데이터를 통해서 이들간의 클러스터링과 실제 예제 질의를 토한 비교분석을 통해 객체간의 유사검색이 가능하도록 하는 특징추출 방법을 제안하였다. 본 논문에서는 제시한 모양기반 특징추출 방법은 웹상의 다양한 3차원 객체정보의 자동분류나 3차원 그래픽 데이터베이스를 위한 인덱스 구축 등에 활용될 수 있을 것이다.

  • PDF

Image color and shape feature extraction technique using object MBR (객체 MBR을 이용한 이미지 내용 기반 색상정보 및 모양정보 추출 기법)

  • 한정운;김병곤;이재호;정헌석;임해철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.136-138
    • /
    • 2000
  • 대용량의 멀티미디어 자료를 기반으로 하는 산업의 급성장은 이에 적합한 효율적인 저장 및 검색시스템을 요구하고 있다. 그러나, 멀티미디어 자료의 고차원적인 특성은 저장과 검색에 있어 성능을 저하시키는 문제점으로 지적되고 있다. 이를 해결하기 위하여 멀티미디어 자료로부터 저차원의 특성을 추출하여 내용기반 검색을 수행하는 연구가 진행되어오고 있다. 본 논문에서는 이미지내의 객체 MBR(Minimum Bounding Rectangle)을 이용하여 저차원의 색상정보와 모양정보를 추출하는 기법을 제안한다. 히스토그램정보는 이미지의 객체를 포함하는 MBR을 이용하여 9개의 타일로 균등분할하여 추출하며, 모양정보는 객체 MBR의 중심으로부터 16방향의 스캐닝을 통해 16개의 점으로 구성된 모양정보를 추출한다. 실험을 통하여 추출된 정보의 검색성능을 평가하였다.

  • PDF

Feature Extraction of Object Images by Using ICA-based Factorial Code (ICA 기반 인수부호를 이용한 물체영상의 특징추출)

  • Cho, Yong-Hyun;Hong, Seong-Jun
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.709-712
    • /
    • 2005
  • 본 논문에서는 독립성분분석에 기반한 인수부호를 이용한 물체영상의 특징추출을 제안하였다. 효과적인 독립성분분석을 구현을 위해 입출력 사이의 상호정보를 최대화하는 자율학습의 알고리즘을 이용하였으며, 통계적으로 독립인 계수로 구성된 인수부호를 효과적으로 추출하기 위해 독립성분분석의 이용하였다. 제안된 기법을 Imageafter사에서 제공하는 $352{\times}264$ 픽셀의 18개 물체영상을 대상으로 실험한 결과, 빠르면서도 정확한 복원성능과 PCA보다도 개선된 특징 추출성능이 있음을 확인하였다.

  • PDF

Object Tracking Algorithm for Multimedia System

  • Kim, Yoon-ho;Kwak, Yoon-shik;Song, Hag-hyun;Ryu, Kwang-Ryol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.217-221
    • /
    • 2002
  • In this paper, we propose a new scheme of motion tracking based on fuzzy inference (FI)and wavelet transform (WT) from image sequences. First, we present a WT to segment a feature extraction of dynamic image . The coefficient matrix for 2-level DWT tent to be clustered around the location of important features in the images, such as edge discontinuities, peaks, and corners. But these features are time varying owing to the environment conditions. Second, to reduce the spatio-temporal error, We develop a fuzzy inference algorithm. Some experiments are peformed to testify the validity and applicability of the proposed system. As a result, proposed method is relatively simple compared with the traditional space domain method. It is also well suited for motion tracking under the conditions of variation of illumination.

  • PDF

An Implementation of Embedded Linux System for Embossed Digit Recognition using CNN based Deep Learning (CNN 기반 딥러닝을 이용한 임베디드 리눅스 양각 문자 인식 시스템 구현)

  • Yu, Yeon-Seung;Kim, Cheong Ghil;Hong, Chung-Pyo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.100-104
    • /
    • 2020
  • Over the past several years, deep learning has been widely used for feature extraction in image and video for various applications such as object classification and facial recognition. This paper introduces an implantation of embedded Linux system for embossed digits recognition using CNN based deep learning methods. For this purpose, we implemented a coin recognition system based on deep learning with the Keras open source library on Raspberry PI. The performance evaluation has been made with the success rate of coin classification using the images captured with ultra-wide angle camera on Raspberry PI. The simulation result shows 98% of the success rate on average.

RGB-D Image Feature Point Extraction and Description Method for 3D Object Recognition (3차원 객체 인식을 위한 RGB-D 영상 특징점 추출 및 특징 기술자 생성 방법)

  • Park, Noh-Young;Jang, Young-Kyoon;Woo, Woon-Tack
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.448-450
    • /
    • 2012
  • 본 논문에서는 Kinect 방식의 RGB-D 영상센서를 사용하여, 깊이(Depth) 영상으로부터 3차원 객체의 기하정보를 표현하는 표면 정규 벡터(Surface Normal Vector)를 추출하고, 그 결과를 영상화하는 방법을 제안하며, 제안된 방법으로 생성된 영상으로부터 깊이 영상의 특징점 및 특징 기술자를 추출하여 3차원 객체 인식 성능을 향상시키는 방법을 제안한다. 또한 생성된 RGB-D 특징 기술자들을 객체 단위로 구분 가능한 코드북(CodeBook) 학습을 통한 인식방법을 제안하여 객체의 인식 성능을 높이는 방법을 제안한다. 제안하는 RGB-D 기반의 특징 추출 및 학습 방법은 텍스쳐 유무, 카메라 회전 및 이동 변화 등의 환경변화에 강건함을 실험적으로 증명하였으며, 이 방법은 Kinect 방식의 RGB-D 영상을 사용하는 3차원 객체/공간 인식 및 추적, 혹은 이를 응용하는 증강현실 시스템에 적용하여 사용될 수 있다.