• Title/Summary/Keyword: Object Feature Extraction

Search Result 266, Processing Time 0.028 seconds

Adaptive Background Modeling Considering Stationary Object and Object Detection Technique based on Multiple Gaussian Distribution

  • Jeong, Jongmyeon;Choi, Jiyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.51-57
    • /
    • 2018
  • In this paper, we studied about the extraction of the parameter and implementation of speechreading system to recognize the Korean 8 vowel. Face features are detected by amplifying, reducing the image value and making a comparison between the image value which is represented for various value in various color space. The eyes position, the nose position, the inner boundary of lip, the outer boundary of upper lip and the outer line of the tooth is found to the feature and using the analysis the area of inner lip, the hight and width of inner lip, the outer line length of the tooth rate about a inner mouth area and the distance between the nose and outer boundary of upper lip are used for the parameter. 2400 data are gathered and analyzed. Based on this analysis, the neural net is constructed and the recognition experiments are performed. In the experiment, 5 normal persons were sampled. The observational error between samples was corrected using normalization method. The experiment show very encouraging result about the usefulness of the parameter.

Anomaly detection of isolating switch based on single shot multibox detector and improved frame differencing

  • Duan, Yuanfeng;Zhu, Qi;Zhang, Hongmei;Wei, Wei;Yun, Chung Bang
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.811-825
    • /
    • 2021
  • High-voltage isolating switches play a paramount role in ensuring the safety of power supply systems. However, their exposure to outdoor environmental conditions may cause serious physical defects, which may result in great risk to power supply systems and society. Image processing-based methods have been used for anomaly detection. However, their accuracy is affected by numerous uncertainties due to manually extracted features, which makes the anomaly detection of isolating switches still challenging. In this paper, a vision-based anomaly detection method for isolating switches, which uses the rotational angle of the switch system for more accurate and direct anomaly detection with the help of deep learning (DL) and image processing methods (Single Shot Multibox Detector (SSD), improved frame differencing method, and Hough transform), is proposed. The SSD is a deep learning method for object classification and localization. In addition, an improved frame differencing method is introduced for better feature extraction and a hough transform method is adopted for rotational angle calculation. A number of experiments are conducted for anomaly detection of single and multiple switches using video frames. The results of the experiments demonstrate that the SSD outperforms the You-Only-Look-Once network. The effectiveness and robustness of the proposed method have been proven under various conditions, such as different illumination and camera locations using 96 videos from the experiments.

Character Recognition and Search for Media Editing (미디어 편집을 위한 인물 식별 및 검색 기법)

  • Park, Yong-Suk;Kim, Hyun-Sik
    • Journal of Broadcast Engineering
    • /
    • v.27 no.4
    • /
    • pp.519-526
    • /
    • 2022
  • Identifying and searching for characters appearing in scenes during multimedia video editing is an arduous and time-consuming process. Applying artificial intelligence to labor-intensive media editing tasks can greatly reduce media production time, improving the creative process efficiency. In this paper, a method is proposed which combines existing artificial intelligence based techniques to automate character recognition and search tasks for video editing. Object detection, face detection, and pose estimation are used for character localization and face recognition and color space analysis are used to extract unique representation information.

Lightweight high-precision pedestrian tracking algorithm in complex occlusion scenarios

  • Qiang Gao;Zhicheng He;Xu Jia;Yinghong Xie;Xiaowei Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.840-860
    • /
    • 2023
  • Aiming at the serious occlusion and slow tracking speed in pedestrian target tracking and recognition in complex scenes, a target tracking method based on improved YOLO v5 combined with Deep SORT is proposed. By merging the attention mechanism ECA-Net with the Neck part of the YOLO v5 network, using the CIoU loss function and the method of CIoU non-maximum value suppression, connecting the Deep SORT model using Shuffle Net V2 as the appearance feature extraction network to achieve lightweight and fast speed tracking and the purpose of improving tracking under occlusion. A large number of experiments show that the improved YOLO v5 increases the average precision by 1.3% compared with other algorithms. The improved tracking model, MOTA reaches 54.3% on the MOT17 pedestrian tracking data, and the tracking accuracy is 3.7% higher than the related algorithms and The model presented in this paper improves the FPS by nearly 5 on the fps indicator.

ACCURACY ASSESSMENT BY REFINING THE RATIONAL POLYNOMIALS COEFFICIENTS(RPCs) OF IKONOS IMAGERY

  • LEE SEUNG-CHAN;JUNG HYUNG-SUP;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.344-346
    • /
    • 2004
  • IKONOS 1m satellite imagery is particularly well suited for 3-D feature extraction and 1 :5,000 scale topographic mapping. Because the image line and sample calculated by given RPCs have the error of more than 11m, in order to be able to perform feature extraction and topographic mapping, rational polynomial coefficients(RPCs) camera model that are derived from the very complex IKONOS sensor model to describe the object-image geometry must be refined by several Ground Control Points(GCPs). This paper presents a quantitative evaluation of the geometric accuracy that can be achieved with IKONOS imagery by refining the offset and scaling factors of RPCs using several GCPs. If only two GCPs are available, the offsets and scale factors of image line and sample are updated. If we have more than three GCPs, four parameters of the offsets and scale factors of image line and sample are refined first, and then six parameters of the offsets and scale factors of latitude, longitude and height are updated. The stereo images acquired by IKONOS satellite are tested using six ground points. First, the RPCs model was refined using 2 GCPs and 4 check points acquired by GPS. The results from IKONOS stereo images are reported and these show that the RMSE of check point acquired from left images and right are 1.021m and 1.447m. And then we update the RPCs model using 4 GCPs and 2 check points. The RMSE of geometric accuracy is 0.621 m in left image and 0.816m in right image.

  • PDF

Facial Feature Extraction in Reduced Image using Generalized Symmetry Transform (일반화 대칭 변환을 이용한 축소 영상에서의 얼굴특징추출)

  • Paeng, Young-Hye;Jung, Sung-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.569-576
    • /
    • 2000
  • The GST can extract the position of facial features without a prior information in an image. However, this method requires a plenty of the processing time because the mask size to process GST must be larger than the size of object such as eye, mouth and nose in an image. In addition, it has the complexity for the computation of middle line to decide facial features. In this paper, we proposed two methods to overcome these disadvantage of the conventional method. First, we used the reduced image having enough information instead of an original image to decrease the processing time. Second, we used the extracted peak positions instead of the complex statistical processing to get the middle lines. To analyze the performance of the proposed method, we tested 200 images including, the front, rotated, spectacled, and mustached facial images. In result, the proposed method shows 85% in the performance of feature extraction and can reduce the processing time over 53 times, compared with existing method.

  • PDF

Gait Recognition Using Multiple Feature detection (다중 특징점 검출을 이용한 보행인식)

  • Cho, Woon;Kim, Dong-Hyeon;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.6
    • /
    • pp.84-92
    • /
    • 2007
  • The gait recognition is presented for human identification from a sequence of noisy silhouettes segmented from video by capturing at a distance. The proposed gait recognition algorithm gives better performance than the baseline algorithm because of segmentation of the object by using multiple modules; i) motion detection, ii) object region detection, iii) head detection, and iv) active shape models, which solve the baseline algorithm#s problems to make background, to remove shadow, and to be better recognition rates. For the experiment, we used the HumanID Gait Challenge data set, which is the largest gait benchmarking data set with 122 objects, For realistic simulation we use various values for the following parameters; i) viewpoint, ii) shoe, iii) surface, iv) carrying condition, and v) time.

An Implementation of Pattern Recognition Algorithm for Fast Paper Currency Counting (고속 지폐 계수를 위한 패턴 인식 알고리즘 구현)

  • Kim, Seon-Gu;Kang, Byeong-Gwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.7
    • /
    • pp.459-466
    • /
    • 2014
  • In this paper, we suggest an efficient image processing method for fast paper currency counting with pattern recognition. The patterns are consisted of feature data in each note object extracted from full reflection image of notes and a general contact image sensor(CIS) is used to aggregate the feature images. The proposed pattern recognition algorithm can endure image variation when the paper currency is scanned because it is not sensitive to changes of image resulting in successful note recognition. We tested 100 notes per denomination and currency of several countries including Korea, U.S., China, EU, Britain and Turkey. To ensure the reliability of the result, we tested a total of 10 times per each direction of notes. We can conclude that this algorithm will be applicable to commercial product because of its successful recognition rates. The 100% recognition rates are obtained in almost cases with exceptional case of 99.9% in Euro and 99.8% in Turkish Lira.

Gabor Descriptors Extraction in the SURF Feature Point for Improvement Accuracy in Face Recognition (얼굴 인식의 정확도 향상을 위한 SURF 특징점에서의 Gabor 기술어 추출)

  • Lee, Jae-Yong;Kim, Ji-Eun;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.808-816
    • /
    • 2012
  • Face recognition has been actively studied and developed in various fields. In recent years, interest point extraction algorithms mainly used for object recognition were being applied to face recognition. The SURF(Speeded Up Robust Features) algorithm was used in this paper which was one of typical interest point extraction algorithms. Generally, the interest points extracted from human faces are less distinctive than the interest points extracted from objects due to the similar shapes of human faces. Thus, the accuracy of the face recognition using SURF tends to be low. In order to improve it, we propose a face recognition algorithm which performs interest point extraction by SURF and the Gabor wavelet transform to extract descriptors from the interest points. In the result, the proposed method shows around 23% better recognition accuracy than SURF-based conventional methods.

Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage (매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색)

  • Kwon, Moonhee;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.551-561
    • /
    • 2022
  • Geophysical exploration methods are very useful for generating high-resolution images of underground structures, and such methods can be applied to investigation of buried cultural properties and for determining their exact locations. In this study, image feature extraction and image segmentation methods were applied to automatically distinguish the structures of buried relics from the high-resolution ground-penetrating radar (GPR) images obtained at the center of Silla Kingdom, Gyeongju, South Korea. The major purpose for image feature extraction analyses is identifying the circular features from building remains and the linear features from ancient roads and fences. Feature extraction is implemented by applying the Canny edge detection and Hough transform algorithms. We applied the Hough transforms to the edge image resulted from the Canny algorithm in order to determine the locations the target features. However, the Hough transform requires different parameter settings for each survey sector. As for image segmentation, we applied the connected element labeling algorithm and object-based image analysis using Orfeo Toolbox (OTB) in QGIS. The connected components labeled image shows the signals associated with the target buried relics are effectively connected and labeled. However, we often find multiple labels are assigned to a single structure on the given GPR data. Object-based image analysis was conducted by using a Large-Scale Mean-Shift (LSMS) image segmentation. In this analysis, a vector layer containing pixel values for each segmented polygon was estimated first and then used to build a train-validation dataset by assigning the polygons to one class associated with the buried relics and another class for the background field. With the Random Forest Classifier, we find that the polygons on the LSMS image segmentation layer can be successfully classified into the polygons of the buried relics and those of the background. Thus, we propose that these automatic classification methods applied to the GPR images of buried cultural heritage in this study can be useful to obtain consistent analyses results for planning excavation processes.