• Title/Summary/Keyword: Object Feature Extraction

Search Result 266, Processing Time 0.027 seconds

Automatic Attention Object Extraction Using Feature Maps (특징 지도를 이용한 자동적인 중심 객체 추출)

  • Park Ki-Tae;Kim Jong-Hyeok;Moon Young-Shik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.370-372
    • /
    • 2006
  • 본 논문에서 제안하는 방법은 영상에서 중심 객체를 추출하기 위해 에지와 색상 정보에서 추출한 특집 지도와 배경의 영향을 줄이기 위친 창조 지도(reference map)를 제안한 것이 특징이다. 특징 지도는 다른 영역과 현저하게 구분되는 영역을 검출하기 위해서 영상의 특징 값(feature)들을 이용해서 구성한 영상이라고 할 수 있다. 그리고 창조 지도는 배경의 영향을 최소화하면서, 객체가 존재할 확률이 높은 부분을 나타내는 지도이다. 제안하는 방법은 밝기 차 정보를 가지고 있는 에지와 YCbCr 컬러모델과 HSV 컬러모델의 색상 성분을 특징 값으로 사용한다. 이들 특징 값을 이용해서 특징 지도를 구성하는 방법으로 영상 내 색상 차에 의해서 나타나는 경계부분을 구하는 방법을 사용한다. 이 방법을 사용하여 에지 지도와 두 개의 색상 지도의 3가지 특징 지도를 생성한다. 다음으로, 영상 배경의 영향을 줄이기 위해 참조 지도를 구한다. 구해진 참조 지도와 특징 지도들을 이용해서 결합 지도(combination map)를 생성한다. 결함 지도로부터 다각형의 객체 후보 영역을 구하고, 객체 후보 영역에 영상분할을 적용하여 중심 객체를 추출한다. 실험에 사용된 영상들은 Corel DB를 사용하였으며, 실험결과로써 precision은 84.3%, recall은 81.3%의 성능을 보인다.

  • PDF

Feature-based Object Tracking using an Active Camera (능동카메라를 이용한 특징기반의 물체추적)

  • 정영기;호요성
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.694-701
    • /
    • 2004
  • In this paper, we proposed a feature-based tracking system that traces moving objects with a pan-tilt camera after separating the global motion of an active camera and the local motion of moving objects. The tracking system traces only the local motion of the comer features in the foreground objects by finding the block motions between two consecutive frames using a block-based motion estimation and eliminating the global motion from the block motions. For the robust estimation of the camera motion using only the background motion, we suggest a dominant motion extraction to classify the background motions from the block motions. We also propose an efficient clustering algorithm based on the attributes of motion trajectories of corner features to remove the motions of noise objects from the separated local motion. The proposed tracking system has demonstrated good performance for several test video sequences.

Visual Semantic Based 3D Video Retrieval System Using HDFS

  • Ranjith Kumar, C.;Suguna, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3806-3825
    • /
    • 2016
  • This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose we intent to hitch on BOVW and Mapreduce in 3D framework. Here, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook. Further, matching is performed using soft weighting scheme with L2 distance function. As a final step, retrieved results are ranked according to the Index value and produce results .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we fiture the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy.

Automatic Extraction of Alternative Words using Parallel Corpus (병렬말뭉치를 이용한 대체어 자동 추출 방법)

  • Baik, Jong-Bum;Lee, Soo-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1254-1258
    • /
    • 2010
  • In information retrieval, different surface forms of the same object can cause poor performance of systems. In this paper, we propose the method extracting alternative words using translation words as features of each word extracted from parallel corpus, korean/english title pair of patent information. Also, we propose an association word filtering method to remove association words from an alternative word list. Evaluation results show that the proposed method outperforms other alternative word extraction methods.

The Implementation of Fast Object Recognition Using Parallel Processing on CPU and GPU (CPU와 GPU의 병렬 처리를 이용한 고속 물체 인식 알고리즘 구현)

  • Kim, Jun-Chul;Jung, Young-Han;Park, Eun-Soo;Cui, Xue-Nan;Kim, Hak-Il;Huh, Uk-Youl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.488-495
    • /
    • 2009
  • This paper presents a fast feature extraction method for autonomous mobile robots utilizing parallel processing and based on OpenMP, SSE (Streaming SIMD Extension) and CUDA programming. In the first step on CPU version, the algorithms and codes are optimized and then implemented by parallel processing. The parallel algorithms are debugged to maintain the same level of performance and the process for extracting key points and obtaining dominant orientation with respect to key points is parallelized. After extraction, a parallel descriptor via SSE instructions is constructed. And the GPU version also implemented by parallel processing using CUDA based on the SIFT. The GPU-Parallel descriptor achieves an acceleration up to five times compared with the CPU-Parallel descriptor, but it shows the lower performance than CPU version. CPU version also speed-up the four and half times compared with the original SIFT while maintaining robust performance.

Automatic Detection of Dead Trees Based on Lightweight YOLOv4 and UAV Imagery

  • Yuanhang Jin;Maolin Xu;Jiayuan Zheng
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.614-630
    • /
    • 2023
  • Dead trees significantly impact forest production and the ecological environment and pose constraints to the sustainable development of forests. A lightweight YOLOv4 dead tree detection algorithm based on unmanned aerial vehicle images is proposed to address current limitations in dead tree detection that rely mainly on inefficient, unsafe and easy-to-miss manual inspections. An improved logarithmic transformation method was developed in data pre-processing to display tree features in the shadows. For the model structure, the original CSPDarkNet-53 backbone feature extraction network was replaced by MobileNetV3. Some of the standard convolutional blocks in the original extraction network were replaced by depthwise separable convolution blocks. The new ReLU6 activation function replaced the original LeakyReLU activation function to make the network more robust for low-precision computations. The K-means++ clustering method was also integrated to generate anchor boxes that are more suitable for the dataset. The experimental results show that the improved algorithm achieved an accuracy of 97.33%, higher than other methods. The detection speed of the proposed approach is higher than that of YOLOv4, improving the efficiency and accuracy of the detection process.

Pillar and Vehicle Classification using Ultrasonic Sensors and Statistical Regression Method (통계적 회귀 기법을 활용한 초음파 센서 기반의 기둥 및 차량 분류 알고리즘)

  • Lee, Chung-Su;Park, Eun-Soo;Lee, Jong-Hwan;Kim, Jong-Hee;Kim, Hakil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.428-436
    • /
    • 2014
  • This paper proposes a statistical regression method for classifying pillars and vehicles in parking area using a single ultrasonic sensor. There are three types of information provided by the ultrasonic sensor: TOF, the peak and the width of a pulse, from which 67 different features are extracted through segmentation and data preprocessing. The classification using the multiple SVM and the multinomial logistic regression are applied to the set of extracted features, and has achieved the accuracy of 85% and 89.67%, respectively, over a set of real-world data. The experimental result proves that the proposed feature extraction and classification scheme is applicable to the object classification using an ultrasonic sensor.

Three-dimensional Distortion-tolerant Object Recognition using Computational Integral Imaging and Statistical Pattern Analysis (집적 영상의 복원과 통계적 패턴분석을 이용한 왜곡에 강인한 3차원 물체 인식)

  • Yeom, Seok-Won;Lee, Dong-Su;Son, Jung-Young;Kim, Shin-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1111-1116
    • /
    • 2009
  • In this paper, we discuss distortion-tolerant pattern recognition using computational integral imaging reconstruction. Three-dimensional object information is captured by the integral imaging pick-up process. The captured information is numerically reconstructed at arbitrary depth-levels by averaging the corresponding pixels. We apply Fisher linear discriminant analysis combined with principal component analysis to computationally reconstructed images for the distortion-tolerant recognition. Fisher linear discriminant analysis maximizes the discrimination capability between classes and principal component analysis reduces the dimensionality with the minimum mean squared errors between the original and the restored images. The presented methods provide the promising results for the classification of out-of-plane rotated objects.

GPU based Fast Recognition of Artificial Landmark for Mobile Robot (주행로봇을 위한 GPU 기반의 고속 인공표식 인식)

  • Kwon, Oh-Sung;Kim, Young-Kyun;Cho, Young-Wan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.688-693
    • /
    • 2010
  • Vision based object recognition in mobile robots has many issues for image analysis problems with neighboring elements in dynamic environments. SURF(Speeded Up Robust Features) is the local feature extraction method of the image and its performance is constant even if disturbances, such as lighting, scale change and rotation, exist. However, it has a difficulty of real-time processing caused by representation of high dimensional vectors. To solve th problem, execution of SURF in GPU(Graphics Processing Unit) is proposed and implemented using CUDA of NVIDIA. Comparisons of recognition rates and processing time for SURF between CPU and GPU by variation of robot velocity and image sizes is experimented.

Objects Recognition and Intelligent Walking for Quadruped Robots based on Genetic Programming (4족 보행로봇의 물체 인식 및 GP 기반 지능적 보행)

  • Kim, Young-Kyun;Hyun, Soo-Hwan;Jang, Jae-Young;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.603-609
    • /
    • 2010
  • This paper introduces an objects recognition algorithm based on SURF(Speeded Up Robust Features) and GP(Genetic Programming) based gaits generation. Combining both methods, a recognition based intelligent walking for quadruped robots is proposed. The gait of quadruped robots is generated by means of symbolic regression for each joint trajectories using GP. A position and size of target object are recognized by SURF which enables high speed feature extraction, and then the distance to the object is calculated. Experiments for objects recognition and autonomous walking for quadruped robots are executed for ODE based Webots simulation and real robot.