• Title/Summary/Keyword: Object Feature Extraction

Search Result 266, Processing Time 0.04 seconds

Facial Feature Localization from 3D Face Image using Adjacent Depth Differences (인접 부위의 깊이 차를 이용한 3차원 얼굴 영상의 특징 추출)

  • 김익동;심재창
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.617-624
    • /
    • 2004
  • This paper describes a new facial feature localization method that uses Adjacent Depth Differences(ADD) in 3D facial surface. In general, human recognize the extent of deepness or shallowness of region relatively, in depth, by comparing the neighboring depth information among regions of an object. The larger the depth difference between regions shows, the easier one can recognize each region. Using this principal, facial feature extraction will be easier, more reliable and speedy. 3D range images are used as input images. And ADD are obtained by differencing two range values, which are separated at a distance coordinate, both in horizontal and vertical directions. ADD and input image are analyzed to extract facial features, then localized a nose region, which is the most prominent feature in 3D facial surface, effectively and accurately.

A Feature Point Extraction and Identification Technique for Immersive Contents Using Deep Learning (딥 러닝을 이용한 실감형 콘텐츠 특징점 추출 및 식별 방법)

  • Park, Byeongchan;Jang, Seyoung;Yoo, Injae;Lee, Jaechung;Kim, Seok-Yoon;Kim, Youngmo
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.529-535
    • /
    • 2020
  • As the main technology of the 4th industrial revolution, immersive 360-degree video contents are drawing attention. The market size of immersive 360-degree video contents worldwide is projected to increase from $6.7 billion in 2018 to approximately $70 billion in 2020. However, most of the immersive 360-degree video contents are distributed through illegal distribution networks such as Webhard and Torrent, and the damage caused by illegal reproduction is increasing. Existing 2D video industry uses copyright filtering technology to prevent such illegal distribution. The technical difficulties dealing with immersive 360-degree videos arise in that they require ultra-high quality pictures and have the characteristics containing images captured by two or more cameras merged in one image, which results in the creation of distortion regions. There are also technical limitations such as an increase in the amount of feature point data due to the ultra-high definition and the processing speed requirement. These consideration makes it difficult to use the same 2D filtering technology for 360-degree videos. To solve this problem, this paper suggests a feature point extraction and identification technique that select object identification areas excluding regions with severe distortion, recognize objects using deep learning technology in the identification areas, extract feature points using the identified object information. Compared with the previously proposed method of extracting feature points using stitching area for immersive contents, the proposed technique shows excellent performance gain.

Content-based Image Retrieval Using Object Region With Main Color (주 색상에 의한 객체 영역을 이용한 내용기반 영상 검색)

  • Kim Dong Woo;Chang Un Dong;Kwak Nae Joung;Song Young Jun
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.2
    • /
    • pp.44-50
    • /
    • 2006
  • This study has proposed a method of content-based image retrieval using object region in order to overcome disadvantages of existing color histogram methods. The existing color histogram methods have a weak point of reducing accuracy, because these have both a quantization error and an absence of spatial information. In order to overcome this problem, we convert a color information to a HSV space, quantize hue factor being pure color information, and calculate histogram. And then we use hue for retrieval feature that is robust in brightness, movement, and rotation. To solve the problem of the absence of spatial information, we select object region in terms of color feature and region correlation. And we use both the edge and the DC in the selected region for retrieving. As a result of experiment with 1,000 natural color images, the proposed method shows better precision and recall than the existing methods.

  • PDF

Content-based Image Retrieval using Variable Region Color (가변 영역 색상을 이용한 내용기반 영상검색)

  • Kim Dong-Woo;Song Young-Jun;Kwon Dong-Jin;Ahn Jae-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.5
    • /
    • pp.367-372
    • /
    • 2005
  • In this paper, we proposed a method of content-based image retrieval using variable region. Content-based image retrieval uses color histogram for the most part. But the existing color histogram methods have a disadvantage that it reduces accuracy because of quantization error and absence of spatial information. In order to overcome this, we convert color information to HSV space, quantize hue factor being pure color information, and calculate histogram of the factor. On the other hand, to solve the problem of the absence of spatial information, we select object region in consideration of color feature and region correlation. It maintains the size of region in the selected object region. But non-object region is integrated in one region. After of selection variable region, we retrieve using color feature. As the result of experimentation, the proposed method improves 10$\%$ in average of precision.

  • PDF

Principle and Algorithm of Cloth Covering and Application to Script Identification (천 커버링의 원리와 알고리즘 그리고 언어 식별에 응용)

  • Kim, Min-Woo;Oh, Il-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.67-76
    • /
    • 2012
  • This paper proposes a concept and algorithm of cloth covering. It is a physically-based model which simulates computationally a shape of cloth covering some objects. The goal of cloth covering is to conceal the details of object and to reveal only the shape outline. It has one scale parameter which controls the degree of suppressing fine-scale structures. To show viability of the proposed cloth covering, this paper performed an experiment of script recognition. The results of comparing accuracies of feature extraction using Gaussian and cloth covering showed that the cloth covering is superior to Gaussian. We discuss the reason for the superiority.

Target Object Detection Based on Robust Feature Extraction (강인한 특징 추출에 기반한 대상물체 검출)

  • Jang, Seok-Woo;Huh, Moon-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7302-7308
    • /
    • 2014
  • Detecting target objects robustly in natural environments is a difficult problem in the computer vision and image processing areas. This paper suggests a method of robustly detecting target objects in the environments where reflection exists. The suggested algorithm first captures scenes with a stereo camera and extracts the line and corner features representing the target objects. This method then eliminates the reflected features among the extracted ones using a homographic transform. Subsequently, the method robustly detects the target objects by clustering only real features. The experimental results showed that the suggested algorithm effectively detects the target objects in reflection environments rather than existing algorithms.

3D Radar Objects Tracking and Reflectivity Profiling

  • Kim, Yong Hyun;Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.263-269
    • /
    • 2012
  • The ability to characterize feature objects from radar readings is often limited by simply looking at their still frame reflectivity, differential reflectivity and differential phase data. In many cases, time-series study of these objects' reflectivity profile is required to properly characterize features objects of interest. This paper introduces a novel technique to automatically track multiple 3D radar structures in C,S-band in real-time using Doppler radar and profile their characteristic reflectivity distribution in time series. The extraction of reflectivity profile from different radar cluster structures is done in three stages: 1. static frame (zone-linkage) clustering, 2. dynamic frame (evolution-linkage) clustering and 3. characterization of clusters through time series profile of reflectivity distribution. The two clustering schemes proposed here are applied on composite multi-layers CAPPI (Constant Altitude Plan Position Indicator) radar data which covers altitude range of 0.25 to 10 km and an area spanning over hundreds of thousands $km^2$. Discrete numerical simulations show the validity of the proposed technique and that fast and accurate profiling of time series reflectivity distribution for deformable 3D radar structures is achievable.

Status Report on the Korean Speech Recognition Platform (한국어 음성인식 플랫폼 개발현황)

  • Kwon, Oh-Wook;Kwon, Suk-Bong;Jang, Gyu-Cheol;Yun, Sung-rack;Kim, Yong-Rae;Jang, Kwang-Dong;Kim, Hoi-Rin;Yoo, Chang-Dong;Kim, Bong-Wan;Lee, Yong-Ju
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.215-218
    • /
    • 2005
  • This paper reports the current status of development of the Korean speech recognition platform (ECHOS). We implement new modules including ETSI feature extraction, backward search with trigram, and utterance verification. The ETSI feature extraction module is implemented by converting the public software to an object-oriented program. We show that trigram language modeling in the backward search pass reduces the word error rate from 23.5% to 22% on a large vocabulary continuous speech recognition task. We confirm the utterance verification module by examining word graphs with confidence score.

  • PDF

A Study on a Feature-based Multiple Objects Tracking System (특징 기반 다중 물체 추적 시스템에 관한 연구)

  • Lee, Sang-Wook;Seol, Sung-Wook;Nam, Ki-Gon;Kwon, Tae-Ha
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.95-101
    • /
    • 1999
  • In this paper, we propose an adaptive method of tracking multiple moving objects using contour and features in surrounding conditions. We use an adaptive background model for robust processing in surrounding conditions. Object segmentation model detects pixels thresholded from local difference image between background and current image and extracts connected regions. Data association problem is solved by using feature extraction and object recognition model in searching window. We use Kalman filters for real-time tracking. The results of simulation show that the proposed method is good for tracking multiple moving objects in highway image sequences.

  • PDF

Identification of Underwater Objects using Sonar Image (소나영상을 이용한 수중 물체의 식별)

  • Kang, Hyunchul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.91-98
    • /
    • 2016
  • Detection and classification of underwater objects in sonar imagery are challenging problems. This paper proposes a system that detects and identifies underwater objects at the sea floor level using a sonar image and image processing techniques. The identification process of underwater objects consists of two steps; detection of candidate regions and identification of underwater objects. The candidate regions of underwater objects are extracted by image registration through the detection of common feature points between the reference background image and the current scanning image. And then, underwater objects are identified as the closest pattern within the database using eigenvectors and eigenvalues as features. The proposed system is expected to be used in efficient securement of Q route in vessel navigation.