• Title/Summary/Keyword: Object Feature Extraction

Search Result 266, Processing Time 0.031 seconds

Moving Object Tracking Using Active Contour Model (동적 윤곽 모델을 이용한 이동 물체 추적)

  • Han, Kyu-Bum;Baek, Yoon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.697-704
    • /
    • 2003
  • In this paper, the visual tracking system for arbitrary shaped moving object is proposed. The established tracking system can be divided into model based method that needs previous model for target object and image based method that uses image feature. In the model based method, the reliable tracking is possible, but simplification of the shape is necessary and the application is restricted to definite target mod el. On the other hand, in the image based method, the process speed can be increased, but the shape information is lost and the tracking system is sensitive to image noise. The proposed tracking system is composed of the extraction process that recognizes the existence of moving object and tracking process that extracts dynamic characteristics and shape information of the target objects. Specially, active contour model is used to effectively track the object that is undergoing shape change. In initializatio n process of the contour model, the semi-automatic operation can be avoided and the convergence speed of the contour can be increased by the proposed effective initialization method. Also, for the efficient solution of the correspondence problem in multiple objects tracking, the variation function that uses the variation of position structure in image frame and snake energy level is proposed. In order to verify the validity and effectiveness of the proposed tracking system, real time tracking experiment for multiple moving objects is implemented.

Video Object Extraction using Level Set Method (레벨셑 방법을 이용한 비디오 객체 추출)

  • 이광연;김성대
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.337-340
    • /
    • 2000
  • 비디오객체 추출 기법은 MPEG-4 및 MPEG-7의 응용을 목표로 최근 활발하게 연구되고 있다. 이들 연구는 객체 추출의 전체적인 구조와 정확한 윤곽선 검출 알고리즘의 개발에 초점을 맞추고 있으며 제한적인 조건하에서 만족할 만한 성능을 내고 있다 그러나, 카메라 움직임, 객체의 빠른 움직임, 비강체 운동 등 보다 일반적인 상황에서는 객체 추출의 안정성이 떨어진다. 본 논문에서는 객체 추출의 안정성을 높이기 위해 칼라, 움직임 정보 등의 특징정보(feature)가 균일한 영역으로 사전분할하고, 분할된 균일영역을 추적하는 알고리즘을 제안한다. 추적된 균일 영역간의 경계는 각 영역의 통계적 분포와 영역경계의 윤곽선으로 정의된 에너지를 레벨셑 방법으로 최소화함으로 조정된다.

  • PDF

MPEG-4 Object Browsing and Extraction by Learning (MPEG-4 객체의 브라우징 및 학습에 의한 추출 기법)

  • 양만석;오상욱;설상훈
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.11b
    • /
    • pp.115-120
    • /
    • 1999
  • 본 논문은 MPEG-4 비디오 객체의 브라우징(browsing) 및 학습을 통한 객체 추출 기법을 제안한다. 제안된 학습에 의한 객체 추출 기법은, 객체 브라우징 시 임의 접근한 프레임에서 사용자가 내용 기반의 객체를 검색하기 위해 선택한 영역에 대한 인지적인 정보를 특징벡터(feature vector)로 history에 저장, 활용함으로써 프레임 내 객체의 계층적인 군집화(clustering)를 수행한다. 이러한 기법으로 인지적 개념과 근접하게 객체를 인식할 수 있음을 실험을 통해 확인하였다.

  • PDF

Feature Extraction of Object Images by Using ICA-basis of Fixed-Point Algorithm (고정점 알고리즘의 ICA-basis에 의한 물체영상의 특징추출)

  • 조용현;홍성준
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.90-93
    • /
    • 2004
  • 본 논문에서는 고정점 알고리즘의 독립성분분석을 이용한 물체영상의 특징추출을 제안하였다. 여기서 고정점 알고리즘은 뉴우턴법에 기초한 것으로 빠른 특징추출성능을 얻기 위함이고, 독립성분분석의 이용은 통계적으로 독립인 기저영상을 효과적으로 추출하기 위함이다. 제안된 기법을 Image*after사에서 제공하는 352$\times$264 픽셀의 10개 물체영상을 대상으로 실험한 결과, 빠르면서도 정확한 복원성능과 PCA보다도 개선된 특징 추출성능이 있음을 확인하였다.

  • PDF

Development of Inspect Algorithm for Pallets Using Vision System

  • Lee, Man-Hyung;Hong, Suh-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.6-101
    • /
    • 2001
  • This paper deals with inspect algorithm using visual system. One of the major problems that arise during polymer production is the estimation of the noise of the product(bad pallets). An erroneous output can cause a lot of losses (production and financial losses). Therefore new methods for real-time inspection of the noise are demanded. For this reason, we have presented a development of vision system algorithm for the defect inspection of PE pallets. First of all, in order to detect the edge of object, the differential filter is used. And we apply to the labeling algorithm for feature extraction. This algorithm is designed for the defect inspection of pallets ...

  • PDF

Recursive extraction method for representing shape feature of object (객체 모양의 특징을 표현하는 재귀적 윤곽 우세 점 추출 방안)

  • 김영태;엄기현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.19-21
    • /
    • 2001
  • 본 논문은 객체의 유사성 비교를 위해 객체의 모양을 표현하는 한 가지 특징인 윤곽선상의 우세 점들을 찾는 재귀적 윤곽선 근사 알고리즘을 제안한다. 이 알고리즘은 같은 모양의 개체에 대하여 그 객체의 무게 중심을 이용하여 항상 일정한 특정 시작점을 찾음으로써 동일한 우세 점들을 재귀적으로 빠른 수행 시간에 찾는다. 또한 이 알고리즘은 열린 곡선, 닫힌 곡선 및 다각형 등 어떤 모양의 평면 도형에도 모두 적용 가능하다. 제안 알고리즘의 평균 시간 복잡도는 O(nlogn)이다.

  • PDF

FPGA Implementation of SURF-based Feature extraction and Descriptor generation (SURF 기반 특징점 추출 및 서술자 생성의 FPGA 구현)

  • Na, Eun-Soo;Jeong, Yong-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.4
    • /
    • pp.483-492
    • /
    • 2013
  • SURF is an algorithm which extracts feature points and generates their descriptors from input images, and it is being used for many applications such as object recognition, tracking, and constructing panorama pictures. Although SURF is known to be robust to changes of scale, rotation, and view points, it is hard to implement it in real time due to its complex and repetitive computations. Using 3.3 GHz Pentium, in our experiment, it takes 240ms to extract feature points and create descriptors in a VGA image containing about 1,000 feature points, which means that software implementation cannot meet the real time requirement, especially in embedded systems. In this paper, we present a hardware architecture that can compute the SURF algorithm very fast while consuming minimum hardware resources. Two key concepts of our architecture are parallelism (for repetitive computations) and efficient line memory usage (obtained by analyzing memory access patterns). As a result of FPGA synthesis using Xilinx Virtex5LX330, it occupies 101,348 LUTs and 1,367 KB on-chip memory, giving performance of 30 frames per second at 100 MHz clock.

Depth Map Estimation Model Using 3D Feature Volume (3차원 특징볼륨을 이용한 깊이영상 생성 모델)

  • Shin, Soo-Yeon;Kim, Dong-Myung;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.447-454
    • /
    • 2018
  • This paper proposes a depth image generation algorithm of stereo images using a deep learning model composed of a CNN (convolutional neural network). The proposed algorithm consists of a feature extraction unit which extracts the main features of each parallax image and a depth learning unit which learns the parallax information using extracted features. First, the feature extraction unit extracts a feature map for each parallax image through the Xception module and the ASPP(Atrous spatial pyramid pooling) module, which are composed of 2D CNN layers. Then, the feature map for each parallax is accumulated in 3D form according to the time difference and the depth image is estimated after passing through the depth learning unit for learning the depth estimation weight through 3D CNN. The proposed algorithm estimates the depth of object region more accurately than other algorithms.

Salient Object Extraction from Video Sequences using Contrast Map and Motion Information (대비 지도와 움직임 정보를 이용한 동영상으로부터 중요 객체 추출)

  • Kwak, Soo-Yeong;Ko, Byoung-Chul;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1121-1135
    • /
    • 2005
  • This paper proposes a moving object extraction method using the contrast map and salient points. In order to make the contrast map, we generate three-feature maps such as luminance map, color map and directional map and extract salient points from an image. By using these features, we can decide the Attention Window(AW) location easily The purpose of the AW is to remove the useless regions in the image such as background as well as to reduce the amount of image processing. To create the exact location and flexible size of the AW, we use motion feature instead of pre-assumptions or heuristic parameters. After determining of the AW, we find the difference of edge to inner area from the AW. Then, we can extract horizontal candidate region and vortical candidate region. After finding both horizontal and vertical candidates, intersection regions through logical AND operation are further processed by morphological operations. The proposed algorithm has been applied to many video sequences which have static background like surveillance type of video sequences. The moving object was quite well segmented with accurate boundaries.