• Title/Summary/Keyword: Object Extract

검색결과 705건 처리시간 0.025초

비디오 모니터링 환경에서 정확한 돼지 탐지 (Accurate Pig Detection for Video Monitoring Environment)

  • 안한세;손승욱;유승현;서유일;손준형;이세준;정용화;박대희
    • 한국멀티미디어학회논문지
    • /
    • 제24권7호
    • /
    • pp.890-902
    • /
    • 2021
  • Although the object detection accuracy with still images has been significantly improved with the advance of deep learning techniques, the object detection problem with video data remains as a challenging problem due to the real-time requirement and accuracy drop with occlusion. In this research, we propose a method in pig detection for video monitoring environment. First, we determine a motion, from a video data obtained from a tilted-down-view camera, based on the average size of each pig at each location with the training data, and extract key frames based on the motion information. For each key frame, we then apply YOLO, which is known to have a superior trade-off between accuracy and execution speed among many deep learning-based object detectors, in order to get pig's bounding boxes. Finally, we merge the bounding boxes between consecutive key frames in order to reduce false positive and negative cases. Based on the experiment results with a video data set obtained from a pig farm, we confirmed that the pigs could be detected with an accuracy of 97% at a processing speed of 37fps.

Tongue Image Segmentation via Thresholding and Gray Projection

  • Liu, Weixia;Hu, Jinmei;Li, Zuoyong;Zhang, Zuchang;Ma, Zhongli;Zhang, Daoqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.945-961
    • /
    • 2019
  • Tongue diagnosis is one of the most important diagnostic methods in Traditional Chinese Medicine (TCM). Tongue image segmentation aims to extract the image object (i.e., tongue body), which plays a key role in the process of manufacturing an automated tongue diagnosis system. It is still challenging, because there exists the personal diversity in tongue appearances such as size, shape, and color. This paper proposes an innovative segmentation method that uses image thresholding, gray projection and active contour model (ACM). Specifically, an initial object region is first extracted by performing image thresholding in HSI (i.e., Hue Saturation Intensity) color space, and subsequent morphological operations. Then, a gray projection technique is used to determine the upper bound of the tongue body root for refining the initial object region. Finally, the contour of the refined object region is smoothed by ACM. Experimental results on a dataset composed of 100 color tongue images showed that the proposed method obtained more accurate segmentation results than other available state-of-the-art methods.

MPEG-1,2로부터 객체 기반 MPEG-4 변환을 위한 고속 정보 추출 알고리즘 (Fast information extraction algorithm for object-based MPEG-4 conversion from MPEG-1,2)

  • 양종호;박성욱
    • 전자공학회논문지CI
    • /
    • 제41권3호
    • /
    • pp.91-102
    • /
    • 2004
  • 본 논문에서는 MPEG-1,2로부터 객체 기반 MPEG-4로의 고속 변환을 위한 정보 추출 알고리즘을 소개한다. 객체 기반 MPEG-4로의 변환을 위한 정보로써 객체 영상과 형상 정보, 매크로블록 움직임 벡터, 헤더정보가 MPEG-4로부터 추출된다. 추출된 정보를 이용하면 객체 기반 MPEG-4로의 고속 변환이 가능하다. 가장 중요한 정보인 객체 영상 추출은 MPEG-2의 움직임 벡터와 워터쉐드 알고리즘을 이용하여 이루어진다. 사용자의 인지정보를 이용하여 프레임 내에서 객체를 추출하고, 추출된 객체로 연속된 프레임에서 객체를 추적하게 된다. 수행 중 객체의 빠른 움직임으로 만족스럽지 못한 결과를 내더라도, 사용자가 개입하여 다시 좋은 결과를 얻을 수 있도록 하였다. 객체 추적 과정은 크게 두 단계로 객체 추출 단계와 객체 추적 단계로 나누어져 있다. 객체 추출 단계는 블록분류와 워터쉐드 알고리즘으로 자동 분할된 영상에서 사용자가 직접 객체를 추출하는 단계이다. 사용자가 개입하는 단계이기 때문에, 번거로울 수 있으나 손쉽게 추출할 수 있도록 구현하였다 객체 추적 단계는 연속된 프레임에서 객체를 추적하는 단계로, MPEG-1,2 움직임 벡터와 객체 모양 정보를 이용하여 고속으로 구해지고 워터쉐드 알고리즘으로 윤곽선 보정작업을 하였다 실험 결과 MPEG-1,2 비트스트림으로부터 객체 기반 MPEC-4로의 고속 변환이 가능함을 알 수 있었다.

MPEG-2 비트열로부터 객체 기반 MPEG-4 응용을 위한 고속 정보 추출 알고리즘 (Fast information extraction algorithm for object-based MPEG-4 application from MPEG-2 bit-streamaper)

  • 양종호;원치선
    • 한국통신학회논문지
    • /
    • 제26권12A호
    • /
    • pp.2109-2119
    • /
    • 2001
  • 본 논문에서는 MPEG-2 비트열로부터 객체 기반 MPEG-4로의 고속 변환을 위한 정보 추출 알고리즘을 소개한다. 객체 기반 MPEG-4로의 변환을 위한 정보로써 객체 영상과 형상 정보, 매크로블록 움직임 벡터, 헤더정보가 MPEG-2로부터 추출된다. 추출된 정보를 이용하면 객체 기반 MPEG-4로의 고속 변환이 가능하다. 가장 중요한 정보인 객체 영상 추출은 MPEG-2의 움직임 벡터와 워터쉐드 알고리즘을 이용하여 이루어진다. 사용자의 인지정보를 이용하여 프레임 내에서 객체를 추출하고, 추출된 객체로 연속된 프레임에서 객체를 추적하게 된다. 수행 중 객체의 빠른 움직임으로 만족스럽지 못한 결과를 내더라도, 사용자가 개입하여 다시 좋은 결과를 얻을 수 있도록 하였다. 객체 추적 과정은 크게 두 단계로 객체 추출 단계와 객체 추적 단계로 나누어져 있다. 객체 추출 단계는 블록분류와 워터쉐드 알고리즘으로 자동 분할된 영상에서 사용자가 직접 객체를 추출하는 단계이다. 사용자가 개입하는 단계이기 때문에, 번거로울 수 있으나 손쉽게 추출할 수 있도록 구현하였다. 객체 추적 단계는 연속된 프레임 에서 객체를 추적하는 단계로 MPEG-2 움직임 벡터와 객체 모양 정보를 이용하여 고속으로 구해지고 워터쉐드 알고리즘으로 윤곽선 보정작업을 하였다. 실험 결과 MPEG-2 비트스트림으로부터 객체 기반 MPEG-4로의 고속변환이 가능함을 알 수 있었다.

  • PDF

비젼 카메라와 다중 객체 추적 방법을 이용한 실시간 수질 감시 시스템 (Real-time Water Quality Monitoring System Using Vision Camera and Multiple Objects Tracking Method)

  • 양원근;이정호;조익환;진주경;정동석
    • 한국통신학회논문지
    • /
    • 제32권4C호
    • /
    • pp.401-410
    • /
    • 2007
  • 본 논문에서는 비젼 카메라와 다중 객체 추적 방법을 이용한 실시간 수질 감시 시스템을 제안하였다. 제안된 시스템은 기존의 센서 방식의 감시 시스템과 달리 비젼 카메라를 이용해 객체를 개별적으로 분석한다. 비젼 카메라를 이용한 시스템은 영상에서 개별 객체를 분리해 내는 방법과, 연속하는 두 프레임간의 상관관계에 의해서 다수의 객체를 추적하는 방법으로 구성된다. 실시간 처리를 위해 비모수 예측을 사용하여 배경 영상을 생성하고 이를 이용해 객체를 추출한다. 비모수 예측을 이용하면 연산량을 줄이는 동시에 비교적 정확하게 객체를 추출 할 수 있다. 다중 객체 추적 방법은 개별 객체가 움직이는 방향, 속도 및 가속도를 이용해 다음 움직임을 예측하고 이를 기반으로 추적을 수행하였다. 또한 추적 성공률을 향상시키기 위해 예외처리 알고리즘을 적용하였다. 다양한 환경에서 실험한 결과 제안한 시스템은 처리 시간이 짧고 정확하게 다중 객체를 추적할 수 있어 실시간 수질 감시 시스템에 사용이 가능함을 확인하였다.

고속 푸리에 합성곱을 이용한 파지 조건에 강인한 촉각센서 기반 물체 인식 방법 (Tactile Sensor-based Object Recognition Method Robust to Gripping Conditions Using Fast Fourier Convolution Algorithm)

  • 허현석;김정중;고두열;김창현;이승철
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.365-372
    • /
    • 2022
  • The accurate object recognition is important for the precise and accurate manipulation. To enhance the recognition performance, we can use various types of sensors. In general, acquired data from sensors have a high sampling rate. So, in the past, the RNN-based model is commonly used to handle and analyze the time-series sensor data. However, the RNN-based model has limitations of excessive parameters. CNN-based model also can be used to analyze time-series input data. However, CNN-based model also has limitations of the small receptive field in early layers. For this reason, when we use a CNN-based model, model architecture should be deeper and heavier to extract useful global features. Thus, traditional methods like RN N -based and CN N -based model needs huge amount of learning parameters. Recently studied result shows that Fast Fourier Convolution (FFC) can overcome the limitations of traditional methods. This operator can extract global features from the first hidden layer, so it can be effectively used for feature extracting of sensor data that have a high sampling rate. In this paper, we propose the algorithm to recognize objects using tactile sensor data and the FFC model. The data was acquired from 11 types of objects to verify our posed model. We collected pressure, current, position data when the gripper grasps the objects by random force. As a result, the accuracy is enhanced from 84.66% to 91.43% when we use the proposed FFC-based model instead of the traditional model.

HAQ 알고리즘과 Moment 기반 특징을 이용한 내용 기반 영상 검색 알고리즘 (Content-Based Image Retrieval Algorithm Using HAQ Algorithm and Moment-Based Feature)

  • 김대일;강대성
    • 대한전자공학회논문지SP
    • /
    • 제41권4호
    • /
    • pp.113-120
    • /
    • 2004
  • 본 논문은 내용 기반 검색 기법에 의한 보다 효율적인 특징 추출 및 영상 검색 알고리즘을 제안하였다. 먼저, MPEG 비디오의 key frame을 입력 영상으로 하여 Gaussian edge detector를 이용하여 객체를 추출하고, 그에 따른 객체 특징들, location feature distributed dimension feature와 invariant moments feature를 추출하였다. 다음, 제안하는 HAQ (Histogram Analysis and Quantization) 알고리즘으로 characteristic color feature를 추출하였다. 마지막으로 key frame이 아닌 shot frame을 질의영상으로 하여 제안된 matching 기법에 따라 4가지 특징들의 단계별 검색을 수행하였다. 본 논문의 목적은 사용자가 요구하는 장면이 속한 비디오의 shot 경계 내의 key frame을 검색하는 새로운 내용 기반 검색 알고리즘을 제안함에 있다. 제안된 알고리즘을 바탕으로 10개의 뮤직비디오, 836개의 시험 영상으로 실험한 결과, 효과적인 검색 효율을 보였다.

고해상도 위성영상의 객체기반 분석을 위한 영상 분할 기법 개발 및 평가 (Development and Evaluation of Image Segmentation Technique for Object-based Analysis of High Resolution Satellite Image)

  • 변영기;김용일
    • 한국측량학회지
    • /
    • 제28권6호
    • /
    • pp.627-636
    • /
    • 2010
  • 영상분할은 관심대상이 되는 물체의 영역을 추출하기 위한 객체기반 영상분류의 전처리과정으로서 원격 탐사 영상분석에서 그 중요성 날로 커지고 있다. 본 연구에서는 고해상도 위성영상의 분광 및 공간정보를 반영할 수 있는 새로운 분할방법을 제안한다. 이를 위해 우선 다중분광 에지정보의 지역적 변이특성을 이용하여 영상에서 자동으로 초기시드 점을 추출하였다. 추출된 시드 점과 이웃하는 점들과의 유사성을 기반으로 영역 확장의 우선순위를 결정하는 MSRG가법을 이용하여 영상분할을 수행하였다. 제안된 기법의 효율성을 평가하기 위해 기존에 위성영상분할에 많이 사용된 유역분할법과 영역성장기법과의 시각적/정량적 비교평가를 수행하였다. 정량적 비교평가 방법으로는 무감독 영상분할 평가 측정치와 동일한 조건하에서 수행된 객체기반 분류 정확도를 이용하였다. 실험 결과 제안한 기법은 고해상도 위성영상의 객체기반분석에 유용하게 적용될 수 있으리라 판단된다.

긴급 상황 시나리오 해석을 위한 독립 객체의 규칙 기반 및 확률적 이벤트 인식 (Rule-based and Probabilistic Event Recognition of Independent Objects for Interpretation of Emergency Scenarios)

  • 이준철;최창규
    • 한국멀티미디어학회논문지
    • /
    • 제11권3호
    • /
    • pp.301-314
    • /
    • 2008
  • 기존의 이벤트 인식은 한정된 규칙 기반으로 이루어졌고, 시나리오 해석은 확률 자료의 크기로 많은 학습 시간이 필요했다. 본 논문에서는 객체로부터 특징 벡터를 추출하고 각 객체의 행동 양식을 분석하여 현재 객체의 이벤트를 인식하는 방법과 확률 모델을 기반으로 본 논문에서 정의한 긴급 상황 시나리오를 해석할 수 있는 방법을 제안한다. 독립 객체의 이벤트 규칙은 주-이벤트, 움직임-이벤트, 상호-이벤트, 그리고 'FALL DOWN' 이벤트로 구성되며, 객체의 특징 벡터와 베이지안 네트워크에 의해 학습된 분할 움직임 방향 벡터(SMOV)를 통해 정의된다. 긴급 상황 시나리오는 현재 이벤트의 상태와 사후 확률에 의해 분석된다. 본 논문에서는 기존 방법에 비해 다양한 이벤트를 정의하였고 이벤트 간의 독립성을 높여 확장성이 용이하도록 하였다. 그리고 객체 추적만을 통해 얻을 수 없는 의미론적 정보를 규칙과 확률을 기반으로 획득할 수 있었다.

  • PDF

RapidEye 위성영상의 시계열 NDVI 및 객체기반 분류를 이용한 북한 재령군의 논벼 재배지역 추출 기법 연구 (Extraction of paddy field in Jaeryeong, North Korea by object-oriented classification with RapidEye NDVI imagery)

  • 이상현;오윤경;박나영;이성학;최진용
    • 한국농공학회논문집
    • /
    • 제56권3호
    • /
    • pp.55-64
    • /
    • 2014
  • While utilizing high resolution satellite image for land use classification has been popularized, object-oriented classification has been adapted as an affordable classification method rather than conventional statistical classification. The aim of this study is to extract the paddy field area using object-oriented classification with time series NDVI from high-resolution satellite images, and the RapidEye satellite images of Jaeryung-gun in North Korea were used. For the implementation of object-oriented classification, creating objects by setting of scale and color factors was conducted, then 3 different land use categories including paddy field, forest and water bodies were extracted from the objects applying the variation of time-series NDVI. The unclassified objects which were not involved into the previous extraction classified into 6 categories using unsupervised classification by clustering analysis. Finally, the unsuitable paddy field area were assorted from the topographic factors such as elevation and slope. As the results, about 33.6 % of the total area (32313.1 ha) were classified to the paddy field (10847.9 ha) and 851.0 ha was classified to the unsuitable paddy field based on the topographic factors. The user accuracy of paddy field classification was calculated to 83.3 %, and among those, about 60.0 % of total paddy fields were classified from the time-series NDVI before the unsupervised classification. Other land covers were classified as to upland(5255.2 ha), forest (10961.0 ha), residential area and bare land (3309.6 ha), and lake and river (1784.4 ha) from this object-oriented classification.