• 제목/요약/키워드: Object Detection of Stroke Element

검색결과 2건 처리시간 0.018초

한글 획요소 추출 학습에서 적용 글자의 확장에 따른 추출 성능 분석 (Analysis of Extraction Performance according to the Expanding of Applied Character in Hangul Stroke Element Extraction)

  • 전자연;임순범
    • 한국멀티미디어학회논문지
    • /
    • 제23권11호
    • /
    • pp.1361-1371
    • /
    • 2020
  • Fonts have developed as a visual element, and their influence has rapidly increased around the world. Research on font automation is actively being conducted mainly in English because Hangul is a combination character and the structure is complicated. In the previous study to solve this problem, the stroke element of the character was automatically extracted by applying the object detection by component. However, the previous research was only for similarity, so it was tested on various print style fonts, but it has not been tested on other characters. In order to extract the stroke elements of all characters and fonts, we performed a performance analysis experiment according to the expansion character in the Hangul stroke element extraction training. The results were all high overall. In particular, in the font expansion type, the extraction success rate was high regardless of having done the training or not. In the character expansion type, the extraction success rate of trained characters was slightly higher than that of untrained characters. In conclusion, for the perfect Hangul stroke element extraction model, we will introduce Semi-Supervised Learning to increase the number of data and strengthen it.

글꼴 유사도 판단을 위한 Faster R-CNN 기반 한글 글꼴 획 요소 자동 추출 (Automatic Extraction of Hangul Stroke Element Using Faster R-CNN for Font Similarity)

  • 전자연;박동연;임서영;지영서;임순범
    • 한국멀티미디어학회논문지
    • /
    • 제23권8호
    • /
    • pp.953-964
    • /
    • 2020
  • Ever since media contents took over the world, the importance of typography has increased, and the influence of fonts has be n recognized. Nevertheless, the current Hangul font system is very poor and is provided passively, so it is practically impossible to understand and utilize all the shape characteristics of more than six thousand Hangul fonts. In this paper, the characteristics of Hangul font shapes were selected based on the Hangul structure of similar fonts. The stroke element detection training was performed by fine tuning Faster R-CNN Inception v2, one of the deep learning object detection models. We also propose a system that automatically extracts the stroke element characteristics from characters by introducing an automatic extraction algorithm. In comparison to the previous research which showed poor accuracy while using SVM(Support Vector Machine) and Sliding Window Algorithm, the proposed system in this paper has shown the result of 10 % accuracy to properly detect and extract stroke elements from various fonts. In conclusion, if the stroke element characteristics based on the Hangul structural information extracted through the system are used for similar classification, problems such as copyright will be solved in an era when typography's competitiveness becomes stronger, and an automated process will be provided to users for more convenience.