• Title/Summary/Keyword: Object Characteristic Detection

Search Result 67, Processing Time 0.027 seconds

Occluded Object Motion Estimation System based on Particle Filter with 3D Reconstruction

  • Ko, Kwang-Eun;Park, Jun-Heong;Park, Seung-Min;Kim, Jun-Yeup;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.60-65
    • /
    • 2012
  • This paper presents a method for occluded object based motion estimation and tracking system in dynamic image sequences using particle filter with 3D reconstruction. A unique characteristic of this study is its ability to cope with partial occlusion based continuous motion estimation using particle filter inspired from the mirror neuron system in human brain. To update a prior knowledge about the shape or motion of objects, firstly, fundamental 3D reconstruction based occlusion tracing method is applied and object landmarks are determined. And optical flow based motion vector is estimated from the movement of the landmarks. When arbitrary partial occlusions are occurred, the continuous motion of the hidden parts of object can be estimated by particle filter with optical flow. The resistance of the resulting estimation to partial occlusions enables the more accurate detection and handling of more severe occlusions.

New Shot Boundary Detection Using Local $X^2$-Histogram and Normalization (지역적 $X^2$-히스토그램과 정규화를 이용한 새로운 샷 경계 검출)

  • Shin, Seong-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.103-109
    • /
    • 2007
  • In this paper, we detect shot boundaries using $X^2$-histogram comparison method which have enough spatial information that is more robust to the camera or object motion and produce more precise results. Also, we present normalization method to change Log-Formula and constant that is used for contrast enhancement of image in image processing and apply in difference value. And, present shot boundary detection algorithm to detect shot boundary based on general shot and abrupt shot's characteristic.

  • PDF

Detection of Pulmonary Region in Medical Images through Improved Active Control Model

  • Kwon Yong-Jun;Won Chul-Ho;Kim Dong-Hun;Kim Pil-Un;Park Il-Yong;Park Hee-Jun;Lee Jyung-Hyun;Kim Myoung-Nam;Cho Jin-HO
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.357-363
    • /
    • 2005
  • Active contour models have been extensively used to segment, match, and track objects of interest in computer vision and image processing applications, particularly to locate object boundaries. With conventional methods an object boundary can be extracted by controlling the internal energy and external energy based on energy minimization. However, this still leaves a number of problems, such as initialization and poor convergence in concave regions. In particular, a contour is unable to enter a concave region based on the stretching and bending characteristic of the internal energy. Therefore, this study proposes a method that controls the internal energy by moving the local perpendicular bisector point of each control point on the contour, and determines the object boundary by minimizing the energy relative to the external energy. Convergence at a concave region can then be effectively implemented as regards the feature of interest using the internal energy, plus several objects can be detected using a multi-detection method based on the initial contour. The proposed method is compared with other conventional methods through objective validation and subjective consideration. As a result, it is anticipated that the proposed method can be efficiently applied to the detection of the pulmonary parenchyma region in medical images.

Effective and reliable Hand Detection Using Neural Network with ICA features (독립 성분 특징을 적용한 신경망을 이용한 효율적이고 안정적인 손 검출)

  • Lee, Seung-Joon;Ko, Han-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.367-369
    • /
    • 2004
  • In this paper we propose an effective and reliable hand detection method using neural network with ICA(Independent Component Analysis) Features. Many algorithms of hand detection have been proposed yet. Among them, ICA is the one of the interesting topics in image processing. ICA can not only separate mixed signals but also efficiently extract low-dimensional features in signals. ICA features are able to represent the characteristic of the images well. The object of this paper is to use effectively ICA that has above advantage. That is, by the proper number of Independent component the arithmetic speed is faster and by normalization of ICA feature the performance of detection is more reliable. For this, we adopt the algorithm, the Proportion of variance, which select the ICA feature by comparing the ratio of variance of ICA feature. By this method, we can extract the feature that is good at classifying hand and non-hand. Our experimental results show that by using ICA features, we obtained a better performance in hand detection than by only training NN on the image. And we can use hand detection system effectively and reliably by our proposal.

  • PDF

Building Detection by Convolutional Neural Network with Infrared Image, LiDAR Data and Characteristic Information Fusion (적외선 영상, 라이다 데이터 및 특성정보 융합 기반의 합성곱 인공신경망을 이용한 건물탐지)

  • Cho, Eun Ji;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.635-644
    • /
    • 2020
  • Object recognition, detection and instance segmentation based on DL (Deep Learning) have being used in various practices, and mainly optical images are used as training data for DL models. The major objective of this paper is object segmentation and building detection by utilizing multimodal datasets as well as optical images for training Detectron2 model that is one of the improved R-CNN (Region-based Convolutional Neural Network). For the implementation, infrared aerial images, LiDAR data, and edges from the images, and Haralick features, that are representing statistical texture information, from LiDAR (Light Detection And Ranging) data were generated. The performance of the DL models depends on not only on the amount and characteristics of the training data, but also on the fusion method especially for the multimodal data. The results of segmenting objects and detecting buildings by applying hybrid fusion - which is a mixed method of early fusion and late fusion - results in a 32.65% improvement in building detection rate compared to training by optical image only. The experiments demonstrated complementary effect of the training multimodal data having unique characteristics and fusion strategy.

A Shadow Region Suppression Method using Intensity Projection and Converting Energy to Improve the Performance of Probabilistic Background Subtraction (확률기반 배경제거 기법의 향상을 위한 밝기 사영 및 변환에너지 기반 그림자 영역 제거 방법)

  • Hwang, Soon-Min;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • The segmentation of moving object in video sequence is a core technique of intelligent image processing system such as video surveillance, traffic monitoring and human tracking. A typical method to segment a moving region from the background is the background subtraction. The steps of background subtraction involve calculating a reference image, subtracting new frame from reference image and then thresholding the subtracted result. One of famous background modeling is Gaussian mixture model (GMM). Even though the method is known efficient and exact, GMM suffers from a problem that includes false pixels in ROI (region of interest), specifically shadow pixels. These false pixels cause fail of the post-processing tasks such as tracking and object recognition. This paper presents a method for removing false pixels included in ROT. First, we subdivide a ROI by using shape characteristics of detected objects. Then, a method is proposed to classify pixels from using histogram characteristic and comparing difference of energy that converts the color value of pixel into grayscale value, in order to estimate whether the pixels belong to moving object area or shadow area. The method is applied to real video sequence and the performance is verified.

Object Segmentation for Image Transmission Services and Facial Characteristic Detection based on Knowledge (화상전송 서비스를 위한 객체 분할 및 지식 기반 얼굴 특징 검출)

  • Lim, Chun-Hwan;Yang, Hong-Young
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.26-31
    • /
    • 1999
  • In this paper, we propose a facial characteristic detection algorithm based on knowledge and object segmentation method for image communication. In this algorithm, under the condition of the same lumination and distance from the fixed video camera to human face, we capture input images of 256 $\times$ 256 of gray scale 256 level and then remove the noise using the Gaussian filter. Two images are captured with a video camera, One contains the human face; the other contains only background region without including a face. And then we get a differential image between two images. After removing noise of the differential image by eroding End dilating, divide background image into a facial image. We separate eyes, ears, a nose and a mouth after searching the edge component in the facial image. From simulation results, we have verified the efficiency of the Proposed algorithm.

  • PDF

Detection method of objects with a special pattern in satellite images using Histogram Of Gradients (HOG) feature and Support Vector Machine (SVM) classifier (Histogram Of Gradients (HOG) 피쳐와 Support Vector Machine (SVM) 분류기를 이용한 위성영상에서 관심물체 탐색 방법)

  • Lim, Ingeun;Kim, Suhwan;Choi, Jonggook
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.537-546
    • /
    • 2014
  • In this paper, we propose a method to detect interesting objects in inaccessible areas using high resolution satellite images. We define the interesting objects as a set of objects which have conceptually similar image patterns, not having exact sizes or shapes. In this paper, we developed a learning and classifier of Support Vector Machine (SVM) that extracts characteristic data for inputted images using Histogram of Gradients (HOG) feature and detects similar objects in other images using the characteristic data. As automatic search of interesting objects in our proposed method, we identify that our method provides reduced time and efforts for manual searching similar objects.

Equipment and Worker Recognition of Construction Site with Vision Feature Detection

  • Qi, Shaowen;Shan, Jiazeng;Xu, Lei
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.335-342
    • /
    • 2020
  • This article comes up with a new method which is based on the visual characteristic of the objects and machine learning technology to achieve semi-automated recognition of the personnel, machine & materials of the construction sites. Balancing the real-time performance and accuracy, using Faster RCNN (Faster Region-based Convolutional Neural Networks) with transfer learning method appears to be a rational choice. After fine-tuning an ImageNet pre-trained Faster RCNN and testing with it, the result shows that the precision ratio (mAP) has so far reached 67.62%, while the recall ratio (AR) has reached 56.23%. In other word, this recognizing method has achieved rational performance. Further inference with the video of the construction of Huoshenshan Hospital also indicates preliminary success.

Development of Hazardous Objects Detection Technology based on Metal/Non-Metal Detector (금속/비금속 복합센서기반 위험물 탐지기술 개발)

  • Yoo, Dong-Su;Kim, Seok-Hwan;Lee, Jeong-Yeob;Lee, Seok-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.120-125
    • /
    • 2014
  • Conventional handheld metal detectors use a single induction coil to detect the metallic parts of explosive objects, and the detector generates an acoustic signal from its magnetic response to a metallic object so that an operator can confirm the existence of mines. Though metal detectors have very useful detection mechanisms to find mines, it is easy to cause a high false alarm ratio due to the detection of non-explosive metallic items such as cans, nails and other pieces of metal, etc. Also, because of the physical characteristic of a metal detector it is hard to detect non-metallic objects such as mines made of wood or plastic. Furthermore, the operator must move it to the left and right slowly and repeatedly to attain enough sensor signals to confirm the existence of mines using only a monotonous acoustic signal. To resolve the disadvantages of handheld detectors, many new approaches have been attempted, such as an arrayed detector and a visualization algorithm based on metal/non-metal sensor. In this paper, we introduce a visualization algorithm with a metal/non-metal complex sensor, an arrayed metal/non-metal sensor and the their testing and evaluation.