• Title/Summary/Keyword: Object Breakdown Structure

Search Result 18, Processing Time 0.02 seconds

Visualizing Method of 4D Object by Weight of Construction Risk Factors (4D객체 활용에 의한 건설공사 리스크 인자별 중요도 시각화 기법연구)

  • Kang, Leen-Seok;Park, Seo-Young;Kim, Chang-Hak;Moon, Hyoun-Seok
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.571-573
    • /
    • 2006
  • This study suggests a reasonable method for visualizing risk management level by risk weight linked with 4D model. This study defines risk management procedures as preparation, identification, analysis, response and management to manage potential risks in the construction project. The modules for computerizing in this system consist of planning, construction, application of WBS (Work Breakdown Structure) and RBS (Risk Breakdown Structure), and risk analysis. The final results include a method for visualizing risk level by each element of the project by using 4D simulation technique. It can be used as a visualized risk management tool instead of current system using numerical data.

  • PDF

Extension of IFC information Modeling for Fire Safety based on WBS (작업분류체계 기반 소방 객체 IFC 정보 모델링 확장 방안 연구)

  • Won, Junghye;Kim, Taehoon;Choo, Seoungyeon
    • Journal of KIBIM
    • /
    • v.13 no.2
    • /
    • pp.37-46
    • /
    • 2023
  • The main objective of this study is to propose a method to enhance building safety using the Industry Foundation Classes (IFC) schema in Building Information Modeling (BIM). To achieve this goal, a fire object relationship diagram is created by using the Model View Definition (MVD) and Property Set (Pset) methodology, as well as the Work Breakdown Structure (WBS) based object relationship analysis. The proposed method illustrates how to represent objects and tasks related to fire prevention and human safety during a building fire, including variables that are relevant to these aspects. Furthermore, the proposed method offers the advantage of considering both the IFC object hierarchy and the project work hierarchy when creating new objects, thereby expanding the attribute information for fire safety and maintenance. However, upon confirmation via an IFC viewer after development, a problem with the accuracy of mapping between attributes and objects arises due to the issue of proxy representation of related object information and newly added object information in standard IFC. Therefore, in future research, a mapping method for fire safety objects will be developed to ensure accurate representation, and the scope of utilization of the fire safety object diagram will be expanded. Furthermore, efforts will be made to enhance the accuracy of object and task representation. This research is expected to contribute significantly to the technological development of building safety and fire facility design in the future.

Analysis of Standardized Drawings and Breakdown Structure to Develop of 3D Object Library for Railway Infrastructure (철도인프라 3차원 객체라이브러리 구축을 위한 표준도/분류체계 분석)

  • Park, Hyung-Jin;Seo, Myoung-Bae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.71-76
    • /
    • 2017
  • In BIM design, the construction and use of a library are very important. Since the existing contents can be re-used, the design can be executed more effectively and efficiently. Unlike the construction, the civil engineering, in particular, the railroad sees an inappropriate development and standardization of libraries. Thus, this study aims to develop and standardize the 3D object library in the railroad facility. We first gather and analyze the railroad facility breakdown structure and relevant drawings. We then match the items of analyzed standard drawings and the breakdown structure items. It was reviewed whether the library was required according to all items, and if required, it was reviewed what software was proper. Available software were found to be Civil 3D, Revit, etc. Based on this analysis, we will design the attribute items and specifications of the 3D railroad infrastructure library, as well as construct the library thereof.

Methodology of Fire Safety IFC Schema Extension through Architectural WBS Hierarchy Analysis (건축 WBS 위계 분석을 통한 소방 IFC 스키마 확장 방법론에 관한 연구)

  • Kim, Tae-Hoon;Won, Jung-Hye;Hong, Soon-Min;Choo, Seung-Yeon
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.70-79
    • /
    • 2022
  • As BIM(Building Information Modeling) technology advances in architecture around the world, projects and industries using BIM are increasing. Unlike previous developments that were limited to buildings, BIM is now spreading to other fields such as civil engineering and electricity. In architecture, BIM is used in the entire process from design to maintenance of a building, and IFC(Industry Foundation Classes), a neutral format with interoperability, is used as an open BIM format. Since firefighting requires intuitive 3D models for evacuation and fire simulations, BIM models are desirable. However, due to the BIM model, which was developed centered on building objects, there are no objects and specific properties for fire evacuation in the IFC scheme. Therefore, in this study, when adding a new object in the firefighting area to the IFC schema, the IFC interoperability is not broken and the building WBS(Work Breakdown Structure) is analyzed with a hierarchical system similar to the IFC format to define the scope for a new object and the firefighting part within of the building WBS to derive a firefighting HBS(Hierarchy Breakdown Structure) with the extension of the object-oriented IFC file. And according to HBS, we propose an IFC schema extension method. It is a methodology that allows BIM users to instantly adapt the IFC schema to their needs. Accordingly, the methodology derived from this study is expected to be expanded in various areas to minimize information loss from IFC. In the future, we will apply the IFC extension methodology to the actual development process using HBS to verify that it is actually applicable within the IFC schema.

A Development of Unified and Consistent BIM Database for Integrated Use of BIM-based Quantities, Process, and Construction Costs in Civil Engineering

  • Lee, Jae-Hong;Lee, Sung-Woo;Kim, Tae-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • In this study, we have developed a calculation system for BIM-based quantities, 4D process, and 5D construction costs, by integrating object shape attributes and the standard classification system which consist of Cost Breakdown System(CBS), Object Breakdown System(OBS) and Work Breakdown System(WBS) in order to use for the 4 dimensional process control of roads and rivers. First, a new BIM library database connected with the BIM library shape objects was built according to the CBS/OBS/WBS standard classification system of the civil engineering field, and a integrated database system of BIM-based quantities, process(4D), and construction costs(5D) for roads and rivers was constructed. Nextly, the process classification system and the cost classification system were automatically disassembled to the BIM objects consisting of the Revit-family style elements. Finally, we added functions for automatically generating four dimensional activities and generating a automatic cost statement according to the combination of WBS and CBS classification system The ultimate goal of this study was to extend the integrated quantities, process(4D), and construction costs(5D) system for new roads and rivers, enabling the integrated use of process(4D) and construction costs(5D) in the design and construction stage, based on the tasks described above.

Concept and Structure of Parametric Object Breakdown Structure (OBS) for Practical BIM (BIM 객체분류체계 (OBS) 개념 및 구조)

  • Jung, Youngsoo;Kim, Yesol;Kim, Min;Ju, Taehwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.3
    • /
    • pp.88-96
    • /
    • 2013
  • Recent proliferation of building information modeling (BIM) has actively stimulated integrated utilization of geometric (graphic) and non-geometric (non-graphic) data. Nevertheless, physically and logically, linking and maintaining these two different types of data in an integrated manner requires enormous overhead efforts for practical implementation. In order to address this problem, this paper proposes a concept and structure of the object breakdown structure (OBS) that facilitates advanced BIM implementations in an automated and effective manner. Proposed OBS numbering system has secure rules for organizing graphic objects in full considerations of effectively integrating with non-geometric data (e.g. cost and schedule). It also removes repetitive linking process caused by design changes or modifications. The result of applying this concept to a housing project revealed that only 120 definitions controled over 6,000 graphic objects for full integration with cost and schedule functions.

Design of Interface between 3D Object Model and Structure Analysis Program (3D 객체 모델과 구조해석 프로그램의 인터페이스 설계)

  • Park, Jae-Geun;Kim, Min-Hee;Lee, Kwang-Myong;Choi, Jung-Ho;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.247-252
    • /
    • 2008
  • Recently, the virtual construction system in which project participants efficiently share and control the information throughout the life-cycle of construction project using 3D object models is being developed all over the world. In this paper, a design of interface between 3D object model of structures and structural analysis system that is essential for the analysis and design of civil structures in the virtual space is treated. The relation parametric modeling technique that is needed to make the 3D object models and the construction method of product breakdown structure(PBS) that considers the several parameters for the structural analysis are presented. PBS is built so that it is possible to extract needed attribute information from 3D object model and to apply it to the structural analysis. Design methodology for interface program is proposed that several numerical values determined by the cooperative work same as structural analysis are delivered to 3D object models without additional work. An interface program between 3D object models and structural analysis system developed based on the proposed method would be effectively used to develop virtual construction system.

Methods for Quantitative Disassembly and Code Establishment of CBS in BIM for Program and Payment Management (BIM의 공정과 기성 관리 적용을 위한 CBS 수량 분개 및 코드 정립 방안)

  • Hando Kim;Jeongyong Nam;Yongju Kim;Inhye Ryu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.381-389
    • /
    • 2023
  • One of the crucial components in building information modeling (BIM) is data. To systematically manage these data, various research studies have focused on the creation of object breakdown structures and property sets. Specifically, crucial data for managing programs and payments involves work breakdown structures (WBSs) and cost breakdown structures (CBSs), which are indispensable for mapping BIM objects. Achieving this requires disassembling CBS quantities based on 3D objects and WBS. However, this task is highly tedious owing to the large volume of CBS and divergent coding practices employed by different organizations. Manual processes, such as those based on Excel, become nearly impossible for such extensive tasks. In response to the challenge of computing quantities that are difficult to derive from BIM objects, this study presents methods for disassembling length-based quantities, incorporating significant portions of the bill of quantities (BOQs). The proposed approach recommends suitable CBS by leveraging the accumulated history of WBS-CBS mapping databases. Additionally, it establishes a unified CBS code, facilitating the effective operation of CBS databases.

3-D Information Model for High-speed Railway Infrastructures (고속철도시설물을 위한 3차원정보모델)

  • Shim, Chang-Su;Kim, Deok-Won;Youn, Nu-Ri
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.241-246
    • /
    • 2008
  • Design of a high-speed railway line requires collaboration of heterogeneous application systems and of engineers with different background. Object-based 3D models with metadata can be a shared information model for the effective collaborative design. In this paper, railway infrastructure information model is proposed to enable integrated and inter-operable works throughout the life-cycle of the railway infrastructures, from planning to maintenance. In order to develop the model, object-based 3-D models were built for a 10km railway among Korea high-speed railway lines. The model has basically three information layers for designers, contractors and an owner, respectively. Prestressed concrete box-girders are the most common superstructure of bridges. The design information layer has metadata on requirements, design codes, geometry, analysis and so on. The construction layer has data on drawings, real data for material and products, schedules and so on. The maintenance layer for the owner has the final geometry, material data, products and their suppliers and so on. These information has its own data architecture which is derived from similar concept of product breakdown structure(PBS) and work breakdown structure(WBS). The constructed RIIM for the infrastructures of the high-speed railway was successfully applied to various areas such as design check, structural analysis, automated estimation, construction simulation, virtual viewing, and digital mock-up. The integrated information model can realize virtual construction system for railway lines and dramatically increase the productivity of the whole engineering process.

  • PDF

Automated Methodology for Linking BIM Objects with Cost and Schedule Information by utilizing Geometry Breakdown Structure (GBS)

  • Lee, Kwangjin;Jung, Youngsoo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.637-638
    • /
    • 2015
  • There has been growing interests in life-cycle project management in the construction industry. A lot of attention is given to Building Information Modeling (BIM) which stores and uses a variety of construction information for the life cycle of project management. However, due to the additional workload arising from BIM, its expected effects versus its input costs are still under discussion in practice. As an attempt to address this issue, one of previous studies suggested an automated linking process by developing Standard Classification Numbering System (SCNS) and Geometry Breakdown Structure (GBS) to enhance the efficiency of integration process of BIM objects, cost, and schedule. Though SCNS and GBS facilitates identifying all different dataset, making object sets and linking schedule activities still needs to be manually done without having an automated tool. In this context, the purpose of this paper is to develop and validate a fully automated integration system for 3D-objects, cost, and schedule. A prototype system for single family homes (Hanok) was developed and tested in order to verify its efficiency.

  • PDF