• Title/Summary/Keyword: Object Based Image Retrieval

Search Result 127, Processing Time 0.022 seconds

An Expert System for Content-based Image Retrieval with Object Database (객체 데이터베이스를 이용한 내용기반 이미지 검색 전문가 시스템)

  • Kim, Young-Min;Kim, Seong-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.473-482
    • /
    • 2008
  • In this paper we propose an expert system for content-based image retrieval with object database. The proposed system finds keyword by using knowledge-base and feature of extracted object, and retrieves image by using keyword based image retrieval method. The system can decrease error of image retrieval and save running time. The system also checks whether similar objects exist or not. If not, user can store information of object in object database. Proposed system is flexible and extensible, enabling experts to incrementally add more knowledge and information. Experimental results show that the proposed system is more effective than existing content-based image retrieval method in running time and precision.

Object-Based Image Search Using Color and Texture Homogeneous Regions (유사한 색상과 질감영역을 이용한 객체기반 영상검색)

  • 유헌우;장동식;서광규
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.455-461
    • /
    • 2002
  • Object-based image retrieval method is addressed. A new image segmentation algorithm and image comparing method between segmented objects are proposed. For image segmentation, color and texture features are extracted from each pixel in the image. These features we used as inputs into VQ (Vector Quantization) clustering method, which yields homogeneous objects in terns of color and texture. In this procedure, colors are quantized into a few dominant colors for simple representation and efficient retrieval. In retrieval case, two comparing schemes are proposed. Comparing between one query object and multi objects of a database image and comparing between multi query objects and multi objects of a database image are proposed. For fast retrieval, dominant object colors are key-indexed into database.

Fast Image Retrieval Based on Object Regions Using Bidirectional Round Filter (양방향 반올림 필터를 이용한 객체 영역 기반 고속 영상 검색)

  • 류권열;강경원
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.2
    • /
    • pp.240-246
    • /
    • 2003
  • In this paper, we propose the fast image retrieval method based on object regions using bidirectional round filter in the wavelet transform region. A conventional method that extracts feature vectors on the whole of subband is reduced retrieval efficiency, because of unnecessary background information. The proposed method that extracts feature vectors on the only object region of subband by using bidirectional round filter improve retrieval efficiency, because of removing of background information. And it certainly maintains retrieval efficiency in case of reduction of feature vectors according to color information. Consequently, the retrieval efficiency is improved with 2.5%∼5.3% values, which have a little changes according to characteristics of image.

  • PDF

Feature Extraction Of Content-based image retrieval Using object Segmentation and HAQ algorithm (객체 분할과 HAQ 알고리즘을 이용한 내용 기반 영상 검색 특징 추출)

  • 김대일;홍종선;장혜경;김영호;강대성
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.453-456
    • /
    • 2003
  • Compared with other features of the image, color features are less sensitive to noise and background complication. Besides, this adding to object segmentation has more accuracy of image retrieval. This paper presents object segmentation and HAQ(Histogram Analysis and Quantization) algorithm approach to extract features(the object information and the characteristic colors) of an image. The empirical results shows that this method presents exactly spatial and color information of an image as image retrieval's feature.

  • PDF

Content-Based Image Retrieval System using Feature Extraction of Image Objects (영상 객체의 특징 추출을 이용한 내용 기반 영상 검색 시스템)

  • Jung Seh-Hwan;Seo Kwang-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.3
    • /
    • pp.59-65
    • /
    • 2004
  • This paper explores an image segmentation and representation method using Vector Quantization(VQ) on color and texture for content-based image retrieval system. The basic idea is a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture space. These schemes are used for object-based image retrieval. Features for image retrieval are three color features from HSV color model and five texture features from Gray-level co-occurrence matrices. Once the feature extraction scheme is performed in the image, 8-dimensional feature vectors represent each pixel in the image. VQ algorithm is used to cluster each pixel data into groups. A representative feature table based on the dominant groups is obtained and used to retrieve similar images according to object within the image. The proposed method can retrieve similar images even in the case that the objects are translated, scaled, and rotated.

Object-based Image Retrieval Using Dominant Color Pair and Color Correlogram (Dominant 컬러쌍 정보와 Color Correlogram을 이용한 객체기반 영상검색)

  • 박기태;문영식
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.2
    • /
    • pp.1-8
    • /
    • 2003
  • This paper proposes an object-based image retrieval technique based on the dominant color pair information. Most of existing methods for content based retrieval extract the features from an image as a whole, instead of an object of interest. As a result, the retrieval performance tends to degrade due to the background colors. This paper proposes an object based retrieval scheme, in which an object of interest is used as a query and the similarity is measured on candidate regions of DB images where the object may exist. From the segmented image, the dominant color pair information between adjacent regions is used for selecting candidate regions. The similarity between the query image and DB image is measured by using the color correlogram technique. The dominant color pair information is robust against translation, rotation, and scaling. Experimental results show that the performance of the proposed method has been improved by reducing the errors caused by background colors.

An Object-Level Feature Representation Model for the Multi-target Retrieval of Remote Sensing Images

  • Zeng, Zhi;Du, Zhenhong;Liu, Renyi
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.2
    • /
    • pp.65-77
    • /
    • 2014
  • To address the problem of multi-target retrieval (MTR) of remote sensing images, this study proposes a new object-level feature representation model. The model provides an enhanced application image representation that improves the efficiency of MTR. Generating the model in our scheme includes processes, such as object-oriented image segmentation, feature parameter calculation, and symbolic image database construction. The proposed model uses the spatial representation method of the extended nine-direction lower-triangular (9DLT) matrix to combine spatial relationships among objects, and organizes the image features according to MPEG-7 standards. A similarity metric method is proposed that improves the precision of similarity retrieval. Our method provides a trade-off strategy that supports flexible matching on the target features, or the spatial relationship between the query target and the image database. We implement this retrieval framework on a dataset of remote sensing images. Experimental results show that the proposed model achieves competitive and high-retrieval precision.

A Object-Based Image Retrieval Using Feature Analysis and Fractal Dimension (특징 분석과 프랙탈 차원을 이용한 객체 기반 영상검색)

  • 이정봉;박장춘
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.2
    • /
    • pp.173-186
    • /
    • 2004
  • This paper proposed the content-based retrieval system as a method for performing image retrieval through the effective feature extraction of the object of significant meaning based on the characteristics of man's visual system. To allow the object region of interest to be primarily detected, the region, being comparatively large size, greatly different from the background color and located in the middle of the image, was judged as the major object with a meaning. To get the original features of the image, the cumulative sum of tile declination difference vector the segment of the object contour had and the signature of the bipartite object were extracted and used in the form of being applied to the rotation of the object and the change of the size after partition of the total length of the object contour of the image into the normalized segment. Starting with this form feature, it was possible to make a retrieval robust to any change in translation, rotation and scaling by combining information on the texture sample, color and eccentricity and measuring the degree of similarity. It responded less sensitively to the phenomenon of distortion of the object feature due to the partial change or damage of the region. Also, the method of imposing a different weight of similarity on the image feature based on the relationship of complexity between measured objects using the fractal dimension by the Boxing-Counting Dimension minimized the wrong retrieval and showed more efficient retrieval rate.

  • PDF

An Extended Concept-based Image Retrieval System : E-COIRS (확장된 개념 기반 이미지 검색 시스템)

  • Kim, Yong-Il;Yang, Jae-Dong;Yang, Hyoung-Jeong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.3
    • /
    • pp.303-317
    • /
    • 2002
  • In this paper, we design and implement E-COIRS enabling users to query with concepts and image features used for further refining the concepts. For example, E-COIRS supports the query "retrieve images containing black home appliance to north of reception set. "The query includes two types of concepts: IS-A and composite. "home appliance"is an IS-A concept, and "reception set" is a composite concept. For evaluating such a query. E-COIRS includes three important components: a visual image indexer, thesauri and a query processor. Each pair of objects in an mage captured by the visual image indexer is converted into a triple. The triple consists of the two object identifiers (oids) and their spatial relationship. All the features of an object is referenced by its old. A composite concept is detected by the triple thesaurus and IS-A concept is recolonized by the fuzzy term thesaurus. The query processor obtains an image set by matching each triple in a user with an inverted file and CS-Tree. To support efficient storage use and fast retrieval on high-dimensional feature vectors, E-COIRS uses Cell-based Signature tree(CS-Tree). E-COIRS is a more advanced content-based image retrieval system than other systems which support only concepts or image features.

Implementation of System Retrieving Multi-Object Image Using Property of Moments (모멘트 특성을 이용한 다중 객체 이미지 검색 시스템 구현)

  • 안광일;안재형
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.454-460
    • /
    • 2000
  • To retrieve complex data such as images, the content-based retrieval method rather than keyword based method is required. In this paper, we implemented a content-based image retrieval system which retrieves object of user query effectively using invariant moments which have invariant properties about linear transformation like position transition, rotation and scaling. To extract the shape feature of objects in an image, we propose a labeling algorithm that extracts objects from an image and apply invariant moments to each object. Hashing method is also applied to reduce a retrieval time and index images effectively. The experimental results demonstrate the high retrieval efficiency i.e precision 85%, recall 23%. Consequently, our retrieval system shows better performance than the conventional system that cannot express the shale of objects exactly.

  • PDF