• Title/Summary/Keyword: Obesity-related genes

검색결과 136건 처리시간 0.027초

영양유전체학(Nutrigenomics)의 최근 경향 (Current Trends in Nutrigenomics)

  • 최봉혁;김종배;도명술
    • 한국식품영양과학회지
    • /
    • 제34권10호
    • /
    • pp.1642-1654
    • /
    • 2005
  • With the decoding of human genome in 2004 and the recent development in nutritional science there has been an integration of molecular biology and nutrition. As a consequenc a now word ' molecular nutrition ' has been formed and recently the word 'nutrigenomics' is coined and widely being used. The field of science that showed the most positive result from grafting the science of nutrition and nutrigenomics is obesity. In 1994, Jeffrey Friedman from Rockeffeler University announced that ob gene and obesity has a close relationship and since then there's been a huge research done on genes related to obesity from the molecular nutrition's Point of view. Even now there are many genes presented which are supposed to be related to obesity and big efforts are put into finding what exactly those genes do. Moreover studying only in the context of genes was not enough so functional genomics, which is the study of the functions of cells and the functions and effects between genes and Protein Products, is being studied. This review article discusses the relationship between nutrition and genes and the general idea of nutrigenomics. The article also discusses about the current research status on these subjects.

소금민감성유전자와 비만 (Salt-sensitive genes and their relation to obesity)

  • 전용필;이명숙
    • Journal of Nutrition and Health
    • /
    • 제50권3호
    • /
    • pp.217-224
    • /
    • 2017
  • Purpose: Although it is well known thatmortality and morbidity due to cardiovascular diseases are higher in salt-sensitive subjects than in salt-resistant subjects, their underlying mechanisms related to obesity remain unclear. Here, we focused on salt-sensitive gene variants unrelated to monogenic obesity that interacted with sodium intake in humans. Methods: This review was written based on the modified $3^rd$ step of Khans' systematic review. Instead of the literature, subject genes were based on candidate genes screened from our preliminary Genome-Wide Association Study (GWAS). Finally, literature related to five genes strongly associated with salt sensitivity were analyzed to elucidate the mechanism of obesity. Results: Salt sensitivity is a measure of how blood pressure responds to salt intake, and people are either salt-sensitive or salt-resistant. Otherwise, dietary sodium restriction may not be beneficial for everyone since salt sensitivity may be associated with inherited susceptibility. According to our previous GWAS studies, 10 candidate genes and 11 single nucleotide polymorphisms (SNPs) associated with salt sensitivity were suggested, including angiotensin converting enzyme (ACE), ${\alpha}$-adducin1 (ADD1), angiotensinogen (AGT), cytochrome P450 family 11-subfamily ${\beta}$-2 ($CYP11{\beta}$-2), epithelial sodium channel (ENaC), G-protein b3 subunit (GNB3), G protein-coupled receptor kinases type 4 (GRK4 A142V, GRK4 A486V), $11{\beta}$-hydroxysteroid dehydrogenase type-2 (HSD $11{\beta}$-2), neural precursor cell-expressed developmentally down regulated 4 like (NEDD4L),and solute carrier family 12(sodium/chloride transporters)-member 3 (SLC 12A3). We found that polymorphisms of salt-sensitive genes such as ACE, $CYP11{\beta}$-2, GRK4, SLC12A3, and GNB3 may be positively associated with human obesity. Conclusion: Despite gender, ethnic, and age differences in genetics studies, hypertensive obese children and adults who are carriers of specific salt-sensitive genes are recommended to reduce their sodium intake. We believe that our findings can contribute to the prevention of early-onset of chronic diseases in obese children by facilitating personalized diet-management of obesity from childhood to adulthood.

마황포황탕이 비만생쥐의 비만유전자 및 관련인자에 미치는 영향 (Effects of Mahwangpohang-tang on the Expression of Obesity-Related Genes and Cytokines in Obesity Mice)

  • 송인선;송태원;오민석
    • 동의생리병리학회지
    • /
    • 제19권4호
    • /
    • pp.1055-1061
    • /
    • 2005
  • In this study, the aim was to investigate the effect of Mahwangpohang-tang on the expression of obesity-related genes and cytokines in high fat diet induced obesity mice. In order to investigate the effects of Mahwangpohang-tang(MHPH) on the obesity-related genes and cytokines, C57BL/6 mice were fed with high fat diet. C57BL/6 mice were divided into three groups and fed for 13weeks. Body weight change, diet intake change, final increase of body weight, the ratio of the adipocyte in body weight, the expression of leptin gene in primary adipocytes, the expression of UCP-2 in primary adipocytes, the production change of $TNF-\alpha$ and leptin in primary adipocytes, the expression of leptin in adipocytes tissue. The body weight of Mahwangpohang-tang(MHPH) intake mice was significantly lower than high fat diet group. The amount of the adipocyte in body weight was decreased Significantly. In primary adipocytes, leptin gene expression and the expression of UCP-2 did not change significantly. In primary adipocytes, the amount of $TNF-\alpha$ was significantly decreased at dose of $100{\mu}/ml$ density. In adipocytes tissue, the expression of leptin did not change significantly. These results suggest that MHPH may inhibit the expression of obesity-related genes and cytokines in high fat diet induced obesity mice

The protective effects of steamed ginger on adipogenesis in 3T3-L1 cells and adiposity in diet-induced obese mice

  • Kim, Bohkyung;Kim, Hee-Jeong;Cha, Youn-Soo
    • Nutrition Research and Practice
    • /
    • 제15권3호
    • /
    • pp.279-293
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: The steamed ginger has been shown to have antioxidative effects and a protective effect against obesity. In the present study, we investigated the effects of ethanolic extract of steamed ginger (SGE) on adipogenesis in 3T3-L1 preadipocytes and diet-induced obesity (DIO) mouse model. MATERIALS/METHODS: The protective effects of SGE on adipogenesis were examined in 3T3-L1 adipocytes by measuring lipid accumulations and genes involved in adipogenesis. Male C57BL/6J mice were fed a normal diet (ND, 10% fat w/w), a high-fat diet (HFD, 60% fat w/w), and HFD supplemented with either 40 mg/kg or 80 mg/kg of SGE for 12 weeks. Serum chemistry was measured, and the expression of genes involved in lipid metabolism was determined in the adipose tissue. Histological analysis and micro-computed tomography were performed to identify lipid accumulations in epididymal fat pads. RESULTS: In 3T3-L1 cells, SGE significantly decreased lipid accumulation, with concomitant decreases in the expression of adipogenesis-related genes. SGE significantly attenuated the increase in body, liver, and epididymal adipose tissue weights by HFD. Serum total cholesterol and triglyceride levels were significantly lower in SGE fed groups compared to HFD. In adipose tissue, SGE significantly decreased adipocyte size than that of HFD and altered adipogenesis-related genes. CONCLUSIONS: In conclusion, steamed ginger exerted anti-obesity effects by regulating genes involved in adipogenesis and lipogenesis in 3T3-L1 cell and epididymal adipose tissue of DIO mice.

비만 유전자 단일 염기 다형성 문헌 고찰 (A literature Review of Single Nucleotide Polymorphisms in Obesity Genes)

  • 김성수;송희옥
    • 한방비만학회지
    • /
    • 제4권1호
    • /
    • pp.139-160
    • /
    • 2004
  • The obesity is detrimental to the health of people living in affluent societies. Individual differences in energy metabolism are caused primarily by single nucleotide polymorphisms(SNPs), some of which promote the development of obesity-related type 2 diabetes mellitus. Type 2 diabetes mellitus is a common multifactorial genetic syndrome, which is determined by several different genes and environmental factors. In this review, five major conclusions are reached: (1)To be clinically significant, SNPs must be relevant, prevalent, modifiable, and measurable. (2)Differences in SNPs may have been caused by famine, ultraviolet light, alcohol, climate, agricultural revolution. livestock, lactase persistence, and westernized lifestyle. (3)Candidate obesity genes of calorie intake restriction are SIM 1, MC3R, MC4R, AGRP, CART, CCK, CNTFR, DRD2, Ghrelin, 5-HT receptor, NPY, PON and those of energy metabolism are LEP, LEPR, UCP1, UCP2, UCP3, B2AR, B3AR, PGC-1, Androgen receptor and those of fat mobilization are AGT, ACE, ADA, APM1, Apolipoproteins, PPAR, FABP, FOXC2, GCGR, $11-{\beta}HSDI$, LDLR, Hormonal sensitive lipase, Perilipin, $TNF-{\alpha}$, $TNF-{\beta}$ (4)Candidate obesity genes in the eastern are NPY, LEP, LEPR, UCP1, UCP2, UCP3, B2AR, B3AR, ACE, APM1, PPAR, and FABP. (5)Candidate obesity genes in type 2 diabetes mellitus are MC3R, MC4R, B2AR, B3AR, ADA, APM1, PPAR, FABP, FOXC2, PC1, PC2, ABCC8, CAPN10, CYP19, CYP7, ENPP1, GCK, GYS1, IGF, IL-6, Insulin receptor, IRS, and LPL. The discovery of SNPs will lead to a greater understanding of the pathogenesis of obesity and to better diagnostics, treatment, and eventually prevention.

  • PDF

네트워크 약리학을 통한 황기의 항비만 효능 및 작용기전 예측 연구 (Prediction of functional molecular machanism of Astragalus membranaceus on obesity via network pharmacology analysis)

  • 김미혜
    • 대한본초학회지
    • /
    • 제38권1호
    • /
    • pp.45-53
    • /
    • 2023
  • Objectives : Network pharmacology-based research is one of useful tool to predict the possible efficacy and molecular mechanisms of natural materials with multi compounds-multi targeting effects. In this study, we investigated the functional underlying mechanisms of Astragalus membranaceus Bunge (AM) on its anti-obesity effects using a network pharmacology analysis. Methods : The constituents of AM were collected from public databases and its target genes were gathered from PubChem database. The target genes of AM were compared with the gene set of obesity to find the correlation. Then, the network was constructed by Cytoscape 3.9.1. and functional enrichment analysis was conducted to predict the most relevant pathway of AM. Results : The result showed that AM network contained the 707 nodes and 6867 edges, and 525 intersecting genes were exhibited between AM and obesity gene set, indicating that high correlation with the effects of AM on obesity. Based on GO biological process and KEGG Pathway, 'Response to lipid', 'Cellular response to lipid', 'Lipid metabolic process', 'Regulation of chemokine production', 'Regulation of lipase activity', 'Chemokine signaling pathway', 'Regulation of lipolysis in adipocytes' and 'PPAR signaling pathway' were predicted as functional pathways of AM on obesity. Conclusions : AM showed high relevance with the lipid metabolism related with the chemokine production and lipolysis pathways. This study could be a basis that AM has promising effects on obesity via network pharmacology analysis.

황정 에탄올 추출물의 비만 조절 유전자에 대한 효과 (Effects of ethanol extract of Polygonatum sibiricum rhizome on obesity-related genes)

  • 전우진;이도섭;손서연;서윤지;연승우;강재훈
    • 한국식품과학회지
    • /
    • 제48권4호
    • /
    • pp.384-391
    • /
    • 2016
  • 선행연구(12,13)에 따르면 10주간 ID1216을 투여한 비만 마우스에서 체중과 체지방이 감소하였고 이는 SIRT1-$PGC1{\alpha}$의 발현을 조절하여 나타나는 것으로 확인하였다. 본 연구는 $SIRT1-PGC1{\alpha}-PPAR{\alpha}$의 하위 기전인 UCPs, ACO, aP2의 발현 조절에 ID1216이 영향을 미쳐 그 효과를 나타내는 것을 추가로 확인한 것에 의미가 있다. 또한 10주간 ID1216을 투여한 비만 마우스의 혈액 분석 결과에서도 혈중 중성지방, LDL, HDL total cholesterol등의 혈중 지방질 수치가 개선됨과 동시에 free fatty acid의 농도는 감소하였는데 이는 ID1216이 HSL과 같은 지방질분해효소의 활성을 조절하여 중성지방의 분해과정에 관여하기는 하나 에너지 대사와 지방산 산화 과정에도 복합적으로 관여하여 최종적으로 나타내는 비만 대사 조절 효과에 의한 것으로 판단된다. 따라서 ID1216은 $SIRT1-PGC1{\alpha}-PPAR{\alpha}$ pathway를 촉진시켜 세포와 조직 수준에서 열발생(thermogenesis)에 관여하는 유전자인 UCP1, UCP2, UCP3의 발현을 증가시켰고 ${\beta}$-oxidation에 관여하는 유전자인 ACO와 aP2의 발현도 증가시켰으며 또한 지방분해(lypolysis)에 관여하는 유전자인 ATGL과 HSL의 발현을 증가시키는 분자생물학적 기전을 나타내어 체지방 감소 효과를 나타내는 것으로 확인되었다.

Primary cilia in energy balance signaling and metabolic disorder

  • Lee, Hankyu;Song, Jieun;Jung, Joo Hyun;Ko, Hyuk Wan
    • BMB Reports
    • /
    • 제48권12호
    • /
    • pp.647-654
    • /
    • 2015
  • Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell's antenna to obesity and type II diabetes.

Anti-obese related pharmacological effects of standard potato protein extracts on the 45%Kcal high fat diet supplied mice

  • Kang, Su-Jin;Song, Chang-Hyun;Kim, Jong-Kyu;Chun, Yoon-Seok;Han, Chang-Hyun;Lee, Young-Joon;Ku, Sae-Kwang
    • 대한예방한의학회지
    • /
    • 제22권2호
    • /
    • pp.77-107
    • /
    • 2018
  • Objectives : In present study, therefore, possible beneficial pharmacological activities of standard potato protein extracts (SPE) were observed on the mild diabetic obese mice. Methods : After end of 12 weeks of continuous oral administrations of three different dosages of SPE 400, 200 and 100 mg/kg, or metformin 250 mg/kg, analyzed the hepatoprotective, hypolipidemic, hypoglycemic, nephroprotective and anti-obesity effects, separately. In addition, liver antioxidant defense systems were additionally measured with lipid metabolism-related genes expressions and hepatic glucose-regulating enzyme activities for action mechanism. Results : All of diabetes and related complications including obesity were significantly inhibited by treatment of SPE 400, 200 and 100 mg/kg, dose-dependently, and they also dramatically normalized the hepatic lipid peroxidation and depletion of liver endogenous antioxidant defense system, the changes of the hepatic glucose-regulating enzyme activities, also changes of the lipid metabolism-related genes expressions including hepatic $AMPK{\alpha}1$ and $AMPK{\alpha}2$ mRNA expressions, dose-dependently. Especially, SPE 200 mg/kg constantly showed favorable inhibitory activities against type II diabetes and related complications as comparable to those of metformin 250 mg/kg in HFD mice, respectively. Conclusions : The present work demonstrated that SPE 400, 200 and 100 mg/kg showed favorable anti-diabetic and related complications including obesity refinement activities in HFD mice, through AMPK upregulation mediated hepatic glucose enzyme activity and lipid metabolism-related genes expression, antioxidant defense system and pancreatic lipid digestion enzyme modulatory activities.

적양파 추출물의 항비만 활성 (Anti-Obesity Effects of Red Onions Extract)

  • 송환;서지훈
    • 융합정보논문지
    • /
    • 제12권3호
    • /
    • pp.126-131
    • /
    • 2022
  • 비만은 에너지의 섭취와 소비의 불균형으로 지방조직이 비정상적으로 분화하면서 생기는 대사질환으로 알려져있다. 본 연구에서는 본 연구는 적양파 추출물 처리에 따른 Pancreatic lipase 억제, 지방세포분화 억제 활성을 확인하고자 하였다. 적양파추출물 처리에 따른 활성은 지방세포 분화 및 관련 유전자에 대한 평가는 3T3-L1 지방전구세포를 이용하고 Real-Time PCR을 통하여 확인하였다. 실험 결과, Pancreatic lipase 활성 억제 실험에서 적양파 추출물은 농도 의존적으로 lipase 활성을 억제하였다. 지방세포분화 실험을 수행한 결과, insulin, dexamethasone, 3-isobutyl-1-methylxanthine(MDI)등으로 분화 유도된 3T3-L1 세포에서 적양파 추출물은 지방전구세포의 분화를 억제하였으며 동시에 지방구 형성을 억제하는 것으로 나타났다. 또한, 지방전구세포의 분화 과정과 관련된 C/EBP-α, C/EBP-β, PPAR-γ의 발현을 억제하였다. 본 실험에서 적양파 추출물은 지방분해효소를 억제하며, 지방전구세포 분화와 관련된 유전자 발현을 억제함으로써 지방세포 분화 및 지방구형성을 억제할 수 있는 항비만 소재로의 개발 가능성이 높다고 판단된다.