• Title/Summary/Keyword: OTR(Outer tie rod)

Search Result 5, Processing Time 0.018 seconds

Shape Design of an Outer Tie Rod, Considering Durability Criteria (내구 기준을 고려한 아우터 타이 로드의 형상 설계)

  • Kim, Jong-Kyu;Kwon, Young-Min;Park, Young-Chul;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.54-60
    • /
    • 2009
  • Weight reduction of automobile parts has been sought to achieve fuel efficiency and energy conservation. In this study, a shape design procedure is suggested to obtained the lightweight design of an outer tie rod. The developed aluminium Al6082M is selected as a steel-substitute material. Strength assesment and durability are the important design criterion in the structural design of an outer tie rod. This study considers strength and durability in the optimization process. In this study, the kriging interpolation method and trial and error method are adopted to obtain the minimum weight satisfying the strength and durability constraints.

  • PDF

Structural Optimization of an Outer Tie Rod Using RSM and Kriging (반응표면법 및 크리깅을 이용한 아우터 타이로드의 구조 최적화)

  • Kim, Young-Jun;An, Kyo-Jin;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • It is known that the severest loading condition is the buckling case in the structural design of an outer tie rod. The optimum design of the OTR was suggested considering the buckling performance. The aluminum alloy was investigated as a steel substitute. Then, the structural optimization based on the response surface method and the kriging interpolation method were performed.

Structural Design of the Outer Tie Rod for an Electrical Vehicle (전기 자동차용 아우터 타이로드의 구조설계)

  • Seo, Bu-Kyo;Kim, Jong-Kyu;Lee, Dong-Jin;Seo, Sun-Min;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4171-4177
    • /
    • 2013
  • Outer tie rod is lighter than other, but there is the trend item weight and the number is increasing due to vehicle performance improvement. Thus, to improve vehicle fuel efficiency, weight lightening is essential. Therefore, this research performed the finite element analysis to investigate the structural performance of the outer tie rod for an electrical vehicle. This study was performed as the preliminary study for a lightweight design of the outer tie rod. The weight of outer tie rod was optimized by adopting the steel material and applying the trial and error method. The strengths due to durability and buckling should be considered in the structural design of an outer tie rod. Furthermore, the meta model-based optimization was applied to obtain its lightweight design, leading to 9 % weigh reduction.

Hot Forging Simulation of Outer Tie Rod for Reducing Forming Load (성형하중을 감소시키기 위한 아우터 타이로드의 열간 단조해석)

  • Kim, Young-Jun;An, Kyo-Jin;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1652-1657
    • /
    • 2015
  • Recently the improvement in vehicle performance trend to increase in accordance with the weight of this part. Outer tie rod is small when compared to the other vehicle part by weight, but there is a need to reduce the weight of the outer tie rod in order to improve fuel efficiency of the vehicle. Therefore, from previous studies, a model of outer die rod is proposed using Design of Experiments and Meta model satisfying the buckling performance. Outer tie rod are manufactured through forging process, in this study, we compare the size of the forming load in accordance with the change in the moving speed through the die forging analysis of the outer tie rod on the basis of the actual molding process.

Lightweight Design of an Outer Tie Rod Using Meta-Model Based Optimization Technique (메타모델기반최적화를 이용한 아우터타이로드의 경량화 설계)

  • Kim, Young-Jun;Park, Soon-Hyeong;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7754-7760
    • /
    • 2015
  • The outer tie rod is one of the part of steering system, the optimization process was executed to find the lightweight design. The inner tie rod was considered in the optimum design of an outer tie rod. it could be closer to the test condition than in the case of considering outer tie rod only. The aluminum forging material was considered as a weight reduction proposal. The target of optimization was the shape of the minimum weight to resist at the load of buckling. RSM and Kriging interpolation method were applied as a optimization method to consider the nonlinear shape optimization problem. Then, 16.3%, 16.6% of weight reduction was obtained from the result comparing with that of the initial model. The results of meta model optimization was compared with that of finite element method. The error values of buckling load estimation were 2.6%, 2.04%. and those of weight estimation were 0.17%, 0.13%. Therefore, it seemed that the result of Kriging model could be obtained closer to optimum value than that of RSM model.