• Title/Summary/Keyword: OTAs-based circuit

Search Result 7, Processing Time 0.03 seconds

Electronically Tunable Current gain FTFN using OTAs

  • Arayawat, Somjai;Chaikla, Amphawan;Riewruja, Vanchai;Trisuwannawat, Thanit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1196-1198
    • /
    • 2005
  • This paper presents the realization of a four-terminal floating nullor (FTFN), which is simple configuration comprised three OTAs. The external bias currents of the OTAs can electronically adjust the current gain of the proposed FTFN. The realization method is suitable for implementation in monolithic integrated form. To demonstrate the circuit performances, the proposed FTFN was simulated by the use of the PSPICE analog simulation program and implemented using the commercially available OTAs. The simulation and experimental results verifying the performances of the proposed circuit are agreed with the theoretical values. Some application example in the design of the proposed FTFN as electronically tunable active element are also included.

  • PDF

Realization of OTA-based CDBA

  • Kaewpoonsuk, Anucha;Petchmaneelumka, Wandee;Kamsri, Thawatchai;Riewruja, Vanchai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.229-232
    • /
    • 2005
  • This paper presents the OTA-based current differencing buffered amplifier (CDBA), which has a simple configuration comprised four OTAs. The proposed circuit is ease of design and suitable for analog signal processing applications in both voltage and current modes. The first order allpass filters were implemented as the application examples in order to demonstrate the performances of the proposed CDBA. PSPICE analog simulation and the commercially available OTAs-based experimental results verifying the circuit performances are also included.

  • PDF

OTA-based precision full-wave rectifier

  • Riewtuja, V.;Chaikla, A.;Tammarugwattana, N.;Julsereewong, P.;Surakampontorn, W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.259-261
    • /
    • 1999
  • An operational transconductance amplifier (OTA) based precision full-wave rectifier circuit is presented in this article. The proposed circuit has a very sharp corner in the DC transfer characteristic and simple configuration comprised three OTAs and one current mirror. The temperature dependence of the OTA transconductance is reduced. Experimental results demonstrating the characteristic of the circuit are included.

  • PDF

Hartley-VCO Using Linear OTA-based Active Inductor

  • Jeong, Seong-Ryeol;Chung, Won-Sup
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.465-471
    • /
    • 2015
  • An LC-tuned sinusoidal voltage-controlled oscillator (VCO) using temperature-stable linear operational transconductance amplifiers (OTAs) is presented. Its architecture is based on Hartley oscillator configuration, where the inductor is active one realized with two OTAs and a grounded capacitor. Two diode limiters are used for limiting amplitude. A prototype oscillator built with discrete components exhibits less than 3.1% nonlinearity in its current-to-frequency transfer characteristic from 1.99 MHz to 39.14 MHz and $220ppm/^{\circ}C$ frequency stability to the temperature drift over 0 to $75^{\circ}C$. The total harmonic distortion (THD) is as low as 4.4 % for a specified frequency-tuning range. The simulated phase noise of the VCO is about -108.9 dBc/Hz at 1 MHz offset frequency in frequency range of 0.4 - 46.97 MHz and property of phase noise of VCO is better than colpitts-VCO.

Field programmable analog arrays for implementation of generalized nth-order operational transconductance amplifier-C elliptic filters

  • Diab, Maha S.;Mahmoud, Soliman A.
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.534-548
    • /
    • 2020
  • This study presents a new architecture for a field programmable analog array (FPAA) for use in low-frequency applications, and a generalized circuit realization method for the implementation of nth-order elliptic filters. The proposed designs of both the FPAA and elliptic filters are based on the operational transconductance amplifier (OTA) used in implementing OTA-C filters for biopotential signal processing. The proposed FPAA architecture has a flexible, expandable structure with direct connections between configurable analog blocks (CABs) that eliminates the use of switches. The generalized elliptic filter circuit realization provides a simplified, direct synthetic method for an OTA-C symmetric balanced structure for even/odd-nth-order low-pass filters (LPFs) and notch filters with minimum number of components, using grounded capacitors. The filters are mapped on the FPAA, and both architectures are validated with simulations in LTspice using 90-nm complementary metal-oxide semiconductor (CMOS) technology. Both proposed FPAA and filters generalized synthetic method achieve simple, flexible, low-power designs for implementation of biopotential signal processing systems.

Electronically adjustable gain instrumentation amplifier

  • Julprapa, A.;Chaikla, A.;Ukakimaparn, P.;Parnklang, J.;Suphap, S.;Reiwruja, V.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.158.3-158
    • /
    • 2001
  • In this paper, an instrumentation amplifier, which the voltage gain can be electronically adjusted, is proposed. The realization method is based on the use of operational transconductance amplifiers (OTAs) as active circuit elements. The common mode rejection ratio (CMRR) of the proposed scheme is better than 93dB at the frequency of about 70kHz. The temperature effect to the circuit performance is also compensated. Experimental and simulation results demonstrating the characteristics of the proposed scheme are also included.

  • PDF

A Design of LC-tuned Sinusoidal VCOs Using OTA-C Active Inductors

  • Chung, Won-Sup;Son, Sang-Hee
    • Journal of IKEEE
    • /
    • v.11 no.3
    • /
    • pp.122-128
    • /
    • 2007
  • Sinusoidal voltage-controlled oscillators (VCOs) based on Colpitts and Hartley oscillators are presented. They consist of a LC parallel-tuned circuit connected in a negative-feedback loop with an OTA-R amplifier and two diode limiters, where the inductor is simulated one realized with temperature-stable linear operational transconductance amplifiers (OTAs) and a grounded capacitor. Prototype VCOs are built with discrete components. The Colpitts VCO exhibits less than 1% nonlinearity in its current-to-frequency transfer characteristic from 4.2 to 21.7 MHz and ${\pm}$95 ppm/$^{\circ}C$ temperature drift of frequency over 0 to $70^{\circ}C$. The total harmonic distortion (THD) is as low as 2.92% with a peak-to-peak amplitude of 0.7 V for a frequency-tuning range of 10.8-32 MHz. The Hartley VCO has the temperature drift and THD of two times higher than those of the Colpitts VCO.

  • PDF