• Title/Summary/Keyword: OTA filter

Search Result 22, Processing Time 0.026 seconds

A study on the Filter design using OTA (OTA를 이용한 필터 설계에 대한 연구)

  • 이영훈
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.2
    • /
    • pp.68-72
    • /
    • 2002
  • In this study, I studied on the principle of OTA and it's basic application. Here, I designed second order filter using OTA. This filter has three inputs and one output. If we use each one input among them, we can get a low pass, high pass and band pass output. In the result of the computer simulation. the linear characteristics was superior to the conventional Op-Amp filter. And this circuit is advantageous to making an IC. This will be used to the communication system which has the low distortion and high frequency circuit. This study will have to be continued to form a higher order filter using OTA.

  • PDF

Low-voltage high-linear bipolar OTA and its application to IF bandpass Filter (저전압 고선형 바이폴라 OTA와 이를 이용한 IF 대역통과 필터)

  • Chung, Won-Sup;Son, Sang-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.7 s.361
    • /
    • pp.37-44
    • /
    • 2007
  • A low-voltage high-linear bipolar OTA and its application to IF bandpass filter for GSM cellular telephone are presented. The OTA consists of a low-voltage linear transconductor, a translinear current gain cell, and three current mirrors. The bandpass filter is composed of two cascaded identical second-order bandpass filters, which consist of a resistor, a capacitor, and a grounded simulated inductor realized with two OTA's and a grounded capacitor. SPICE simulations using an 8 GHz bipolar transistor-array parameter show that the OTA with a transconductance of 1 mS exhibits a linearity error of less than ${\pm}2%$ over an input voltage range of ${\pm}0.65\;V$ at supply voltages of ${\pm}2.0\;V$. Temperature coefficient of the transconductance is less than $-90ppm/^{\circ}C$. The bandpass filter has a center frequency of 85 MHz and Q-factor of 80. Temperature coefficient of the center frequency is less than $-182ppm/^{\circ}C$. The power dissipation of the filter is 128 mW.

Design of Continuous-Time OTA-C Elliptic Filter for CMOS VLSI (CMOS VLSI를 위한 연속시간의 OTA-C Elliptic 필터 설계)

  • 신건순
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.10
    • /
    • pp.1051-1062
    • /
    • 1992
  • Design of a continuous-time fifth-order OTA-C Eiliptic filter for operation at 4MHz is presented. The filter has been realize by five OTAs, eight capacitors and a buffer as an OTA-C structure. To prevent decreasing of characteristics due to the parastic capacitance of OTA and loading a buffer and a capacitor have been connected to the next of second section. As the result the frequency characteristics were found to be essentially within specifications : less than 0.2dB passband attenuation, 30dB stopband attenuation and 4Mz cut-off frequency have been obtained and the characteristic of cut-off region has been improved about 7dB compared with it of the theoretical case.

  • PDF

Design of 5th-Order Elliptic Filter in $2{\mu}m$ CMOS ($2{\mu}m$CMOS 5차 Elliptic OTA-C 필터 설계)

  • Shin, Gun-Soon
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.672-678
    • /
    • 1994
  • A design of 5th-order Elliptic OTA-C filter for operation at 4.2MHz is presented. the filter structure is composed entirely of five OTAs(Operational transoonductance Amplifiers), one buffer and seven capacitors. To prevent decreasing of frequency charaoteristios due to the parasitic effeots of OTA and buffer, the design considering of parasitic capacitance and finite resistane of OTA and fuffer is pertormed. As the result of the simulation using SPICE with $2{\mu}m$ CMOS parameters, The performances were found to be essentially within the specifications` less than 0.25dB passband attenuation, 30dB stopband attenuation and 4.2MHz cut-off frequency were satisfactorily obtained. The number of elements is also considerably reduced than other design methods.

Design of OTA Circuit for Current-mode FIR Filter (Current-mode FIR Filter 동작을 위한 OTA 회로 설계)

  • Yeo, Sung-Dae;Cho, Tae-Il;Shin, Young-Chul;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.7
    • /
    • pp.659-664
    • /
    • 2016
  • In this paper, we suggest operational trans-conductance amplifier(OTA) for current-mode FIR filter that can be used in a digital circuit system requiring high operating frequency and low power consumption. The current-mode signal processing is one of the very innovative design method for a low power consumption system with high operating frequency because it shows a constant power regardless of frequency. From the simulation result using 0.35um CMOS process, when Vdd is 2V, it is confirmed that the proposed circuit showed the dynamic range of the about 1V, about 50% of supply voltage and output current swing of about 0~200uA. Also, the power consumption was evaluated with about 21uW and the active size for an integration was measured with $71um{\times}166um$.

Design of an OTA Improving Linearity with a Mobility Compensation Technique (이동도 보상 회로를 이용한 OTA의 선형성 개선)

  • 김규호;양성현;김용환;조경록
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.46-53
    • /
    • 2003
  • This paper describes a new linear operational transconductance amplifier (OTA) and its application to the 9th-order Bessel filter. To improve the linearity of the OTA, we employ a mobility compensation technique. The combination of the triode and the subthreshold region transistors can compensate the mobility reduction effect and make the OTA with a good linearity. The proposed OTA shows $\pm$0.32% Gm variation over the input range of $\pm$0.8-V. The total harmonic distortion (THD) was lower than -60-㏈. The 9th-order Bessel filter has been designed using a 0.35-${\mu}{\textrm}{m}$ n-well CMOS process under 3.3-V supply voltage. It shows the cutoff frequency of 8-MHz and the power consumption of 65-mW.

A Design of Voltage-Controlled CMOS OTA and Its Application to Tunable Filters (전압-제어 CMOS OTA와 이를 이용한 동조 여파기 설계)

  • 차형우;정원섭
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.8
    • /
    • pp.1260-1264
    • /
    • 1990
  • A voltage controlled CMOS operational transconductance amplifier (OTA), whose transconductance is directly proportional to the DC bias voltage, has been designed for many electronic circuit applications. It consists of a differential pair and three ourrent mirrors. The SPICE simulation shows that the conversion sensitivity of the OTA is 41.817 \ulcornerho/V and the linearity error is less than 0.402% over a bias voltage range from -2. OV to 1. OV. Electrically tunalble filters based on voltage controlled impedances, which are realized with OTA's, also have been designed. The SPICE simulation shows that a second-order bandpass filter, whose center frequency is 23KHz at -1. OV, has the conversion sensitivity 6.6KHz/V and the linearity error less than 0.822% over a voltage range from -2.OV tp 1.OV, Tne OTA has been laid out with the 3\ulcorner n-well CMOS design rule adopted in ISRC (inter-university semiconductor research center). The chip size was about $0.756x0.945mm^2$.

  • PDF

Stopband Tunable Multifunctional Gm-C Filter based on OTA with Three-Input/Single-Output (OTA기반의 차단대역 조정이 가능한 3-입력/1-출력 구조의 다기능 Gm-C 필터)

  • Basnet, Barun;Bang, Jun-Ho;Song, Je-ho;Ryu, In-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.5
    • /
    • pp.201-206
    • /
    • 2015
  • A new electronically stopband tunable filter is proposed with three-input single-output using Operational Transconductance Amplifier (OTA) in this paper. The proposed filter provides band pass, low pass and high pass multifunctional responses. Centre frequency ($f_c$) and quality factor (Q) of the realized filters could independently tuned without disturbing each other. Various network sensitivity and non-ideal characteristic analysis are done to check the sensitivity and parasitic effect of different circuit parameters. The CMOS realization of filter is done with 1.8V-0.18um process parameters and HSPICE simulation results are presented to assert the presented theory.

A CMOS 15MHz, 2.6mW, sixth-order bandpass Gm-C filter (CMOS 공정을 이용한 15MHz, 2.6mW, 6차 대역통과 Gm-C 필터)

  • 유창식;정기욱;김원찬
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.6
    • /
    • pp.51-57
    • /
    • 1997
  • Low-voltage, low-power gm-C filter utilizing newly dveloped operational transconductance amplifier (OTA) is described in this paper. The OTA has only two MOS transistors in saturation region between $V_{DD}$ and GND, and thus low voltage operation is possible. To improve the linearity, the OTA is made differential. Common mode feedback, essential in differential circuit, requires no additional implemented in $0.8\mu\textrm{m}$ CMOS process, and the center frequency can be controlled from 15MHz with 3.0V single power supply.

  • PDF

High-Order Temporal Moving Average Filter Using Actively-Weighted Charge Sampling (능동-가중치 전하 샘플링을 이용한 고차 시간상 이동평균 필터)

  • Shin, Soo-Hwan;Cho, Yong-Ho;Jo, Sung-Hun;Yoo, Hyung-Joun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • A discrete-time(DT) filter with high-order temporal moving average(TMA) using actively-weighted charge sampling is proposed in this paper. To obtain different weight of sampled charge, the variable transconductance OTA is used prior to charge sampler, and the ratio of charge can be effectively weighted by switching the control transistors in the OTA. As a result, high-order TMA operation can be possible by actively-weighted charge sampling. In addition, the transconductance generated by the OTA is relatively accurate and stable by using the size ratio of the control transistors. The high-order TMA filter has small size, increased voltage gain, and low parasitic effects due to the small amount of switches and sampling capacitors. It is implemented in the TSMC $0.18-{\mu}m$ CMOS process by TMA-$2^2$. The simulated voltage gain is about 16.7 dB, and P1dB and IIP3 are -32.5 dBm and -23.7 dBm, respectively. DC current consumption is about 9.7 mA.