• Title/Summary/Keyword: ORF7 gene

Search Result 99, Processing Time 0.037 seconds

Cloning and Characterization of a Gene Encoding 22 kDa Functional Protein of Bacteriophage MB78

  • Gupta, Lalita;Chakravorty, Maharani
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.161-166
    • /
    • 2005
  • Functional protein of MB78 bacteriophage having apparent molecular weight of 22 kDa is expressed from 1.7 kb HindIII G fragment. The nucleotide sequence of this fragment showed two open reading frames of 222 and 196 codons in tail-to-tail orientation separated by a 62-nucleotide intercistronic region. The ORF of 22 kDa protein is present in opposite orientation, i.e. in the complementary strand, preceded by a strong ribosomal binding site and a promoter sequence. Another ORF started from the beginning of the fragment whose promoter region and translational start site lies in the 0.45 kb HincII U fragment which is located next to the HindIII G fragment, that has the sequence for DNA bending. 3' end of the fragment has high sequence homology to the EaA and EaI proteins of bacteriophage P22, a close relative of MB78 phage.

Ectopic Expression of Apple MbR7 Gene Induced Enhanced Resistance to Transgenic Arabidopsis Plant Against a Virulent Pathogen

  • Lee, Soo-Yeon;Choi, Yeon-Ju;Ha, Young-Mie;Lee, Dong-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.130-137
    • /
    • 2007
  • A disease resistance related gene, MbR7, was identified in the wild apple species, Malus baccata. The MbR7 gene has a single open reading frame (ORF) of 3,288 nucleotides potentially encoding a 1,095-amino acid protein. Its deduced amino acid sequence resembles the N protein of tobacco and the NL27 gene of potato and has several motifs characteristic of a TIR-NBS-LRR R gene subclass. Ectopic expression of MbR7 in Arabidopsis enhanced the resistance against a virulent pathogen, Pseudomonas syringae pv. tomato DC3000. Microarray analysis confirmed the induction of defense-related gene expression in 35S::MbR7 heterologous Arabidopsis plants, indicating that the MbR7 gene likely activates a downstream resistance pathway without interaction with pathogens. Our results suggest that MbR7 can be a potential target gene in developing a new disease-resistant apple variety.

Expression and diagnostic application of nucleocapsid protein of porcine reproductive and respiratory syndrome virus (돼지 생식기호흡기증후군 바이러스의 Nucleocapsid 단백질 발현 및 진단적 응용)

  • Park, Hyo-Sun;Hahn, Tae-Uook;Kim, Hyun-Soo;Choi, Kang-Seuk;Lee, Eun-Jeong;Kang, Shien-Young
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.1
    • /
    • pp.129-137
    • /
    • 2003
  • Porcine reproductive and respiratory syndrome (PRRS) is characterized by reproductive failures in sows and respiratory problems in piglets. The nucleocapsid(N) protein, encoded by the open reading frame 7 (ORF7) gene, is known to be the most abundant and antigenic protein in PRRS virus. Therefore, it was suggested that the N protein could be a suitable candidate for the detection of PRRS virus-specific antibodies and diagnosis of PRRS. In the present study, the ORF7 gene encoding the N protein was cloned and expressed as a fusion protein with the glutathione S-transferase (GST) in Escherichia coli. The resulting GST-N recombinant protein was used as an antigen for an indirect sandwich enzyme-linked immunosorbent assay (i-ELISA). Expressed GST-N recombinant protein was migrated at 41 kDa and reacted with ORF7-specific monoclonal antibody by Western blotting. In order to increase the specificity of the ELISA for the detection of PRRS virus-specific antibodes, an i-ELISA was developed using an anti-GST antibody as a capture antibody. The sensitivity and specificity of developed i-ELISA were 92% and 96%, respectively. Based on these results, it was suggested that the i-ELISA is a simple and rapid test for screening a large number of swine sera for the anti-PRRS virus antibodies.

Genetic Structure of the phnM Gene Encoding Plant-Type Ferredoxin from Pseudomonas sp. strain DJ77 (Pseudomonas sp. strain DJ77에서 Plant-Type의 Ferredoxin을 암호화하는 phnM 유전자의 구조)

  • Kim, Sungje;Kim, Young-Chang
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.115-119
    • /
    • 1998
  • We cloned the 4.8 kb BglII fragment containing genes downstream pHENX7 from Pseudomonas sp. strain DJ77. The restriction map of the resultant clone, recombinant plasmid pYCS500, was determined. Sequencing analysis of the 465 bp HindIII-ClaI fragment revealed an open reading frame of 282 bp that was then designated phnM. The deduced polypeptide is 93 amino acid residues long with a $M_r$ of 10,008. The PhnM has 37.3-53.9% identity with plant-type ferredoxin proteins such as NahT, XylT, DmpQ, AtdS, PhlG, PhhQ and TbuW and contains the motif similar to well-conserved functional domains of those proteins.

  • PDF

Characterization of the xaiF Gene Encoding a Novel Xylanase-activity- increasing Factor, XaiF

  • Cho, Ssang-Goo;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.378-387
    • /
    • 1998
  • The DNA sequence immediately following the xynA gene of Bacillus stearothermophilus 236 [about l-kb region downstream from the translational termination codon (TAA) of the xynA gene]was found to have an ability to enhance the xylanase activity of the upstream xynA gene. An 849-bp ORF was identified in the downstream region, and the ORF was confirmed to encode a novel protein of 283 amino acids designated as XaiF (xylanase-activity-increasing factor). From the nucleotide sequence of the xaiF gene, the molecular mass and pI of XaiF were deduced to be 32,006 Da and 4.46, respectively. XaiF was overproduced in the E. coli cells from the cloned xaiF gene by using the T7 expression system. The transcriptional initiation site was determined by primer extension analysis and the putative promoter and ribosome binding regions were also identified. Blast search showed that the xaiF and its protein product had no homology with any gene nor any protein reported so far. Also, in B. subtilis, the xaiF trans-activated the xylanase activity at the same rate as in E. coli. In contrast, xaiF had no activating effect on the co-expressed ${\beta}-xylosidase$ of the xylA gene derived from the same strain of B. stearothermophilus. In addition, the intracellular and extracellular fractions from the E. coli cells carrying the plasmid-borne xaiF gene did not increase the isolated xylanase activity, indicating that the protein-protein interaction between XynA and XaiF was not a causative event for the xylanase activating effect of the xaiF gene.

  • PDF

Construction of a Novel Shuttle Vector for Tetragenococcus species based on a Cryptic Plasmid from Tetragenococcus halophilus

  • Min Jae Kim;Tae Jin Kim;Yun Ji Kang;Ji Yeon Yoo;Jeong Hwan Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.211-218
    • /
    • 2023
  • A cryptic plasmid (pTH32) was characterized from Tetragenococcus halophilus 32, an isolate from jeotgal, Korean traditional fermented seafood. pTH32 is 3,198 bp in size with G+C content of 35.84%, and contains 4 open reading frames (ORFs). orf1 and orf2 are 456 bp and 273 bp in size, respectively, and their translation products showed 65.16% and 69.35% similarities with RepB family plasmid replication initiators, respectively, suggesting the rolling-circle replication (RCR) mode of pTH32. orf3 and orf4 encodes putative hypothetical protein of 186 and 76 amino acids, respectively. A novel Tetragenococcus-Escherichia coli shuttle vector, pMJ32E (7.3 kb, Emr), was constructed by ligation of pTH32 with pBluescript II KS(+) and an erythromycin resistance gene (ErmC). pMJ32E successfully replicated in Enterococcus faecalis 29212 and T. halophilus 31 but not in other LAB species. A pepA gene, encoding aminopeptidase A (PepA) from T. halophilus CY54, was successfully expressed in T. halophilus 31 using pMJ32E. The transformant (TF) showed higher PepA activity (49.8 U/mg protein) than T. halophilus 31 cell (control). When T. halophilus 31 TF was subculturd in MRS broth without antibiotic at 48 h intervals, 53.8% of cells retained pMJ32E after 96 h, and only 2.4% of cells retained pMJ32E after 14 days, supporting the RCR mode of pTH32. pMJ32E could be useful for the genetic engineering of Tetragenococcus and Enterococcus species.

Multi-resistance strategy for viral diseases and in vitro short hairpin RNA verification method in pigs

  • Oh, Jong-nam;Choi, Kwang-hwan;Lee, Chang-kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.489-498
    • /
    • 2018
  • Objective: Foot and mouth disease (FMD) and porcine reproductive and respiratory syndrome (PRRS) are major diseases that interrupt porcine production. Because they are viral diseases, vaccinations are of only limited effectiveness in preventing outbreaks. To establish an alternative multi-resistant strategy against FMD virus (FMDV) and PRRS virus (PRRSV), the present study introduced two genetic modification techniques to porcine cells. Methods: First, cluster of differentiation 163 (CD163), the PRRSV viral receptor, was edited with the clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 technique. The CD163 gene sequences of edited cells and control cells differed. Second, short hairpin RNA (shRNAs) were integrated into the cells. The shRNAs, targeting the 3D gene of FMDV and the open reading frame 7 (ORF7) gene of PRRSV, were transferred into fibroblasts. We also developed an in vitro shRNA verification method with a target gene expression vector. Results: shRNA activity was confirmed in vitro with vectors that expressed the 3D and ORF7 genes in the cells. Cells containing shRNAs showed lower transcript levels than cells with only the expression vectors. The shRNAs were integrated into CD163-edited cells to combine the two techniques, and the viral genes were suppressed in these cells. Conclusion: We established a multi-resistant strategy against viral diseases and an in vitro shRNA verification method.

Characterization of the pcbD Gene Encoding 2-Hydroxy-6-Ox0-6-Phenylgexa-2,4-Dienoate Hydrolase from Pseudomonas sp. P20

  • Lim, Jong-Chul;Lee, Jeong-Rai;Lim, Jai-Yun;Min, Kyung-Rak;Kim, Chi-Kyung;Ki, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.258-263
    • /
    • 2000
  • 2-Hydroxy-6-oxo-6phenylhexa-2,4-dienoate (HOPDA) hydrolase catalyzes the hydrolytic cleavage of HOPDA to bemzpate and 2-hydroxypenta-2, 4-dienoate (HPD) during microbial catabolism of biphenyl and polychlorinated biphenyls. A HOPDA hydrolase gene (pcbD) was isolated from the genomic library of Pseudomonas sp. P20 and designated as pCNUO1201; a 7.5-kb XbaI DNA fragment from Pseudomonas sp. P20 was inserted into the pBluescript SK(+) XbaI site. E. coli HB101 harboring pCNU1201 exhibited HOPDA hydrolase activity. The open reading frame (ORF) corresponding to the pcbD gene consisted of 855 base pairs with an ATG initiation codon and a TGA termination codon. The ORF was preceded by a rebosome-binding sequence of 5'-TGGAGC-3' and its G+C content was 55 mol%. The pcbD gene of Pseudomonas sp. P20 was located immedeately downstream of the pcbC gene encoding 2,3- dihydroxybiphenyl 1,2-dioxygenase, and approximately 4-kb upstream of the pcbE gene encoding HPD hydratase. The pcbK gene was able to encode a polypeptide with a molecular weight of 31,732 containing 284 amino acid residues. The deduced amino acid sequence of the HOPDA hydrolase of Pseudomonas sp. P20 exhibited high identity (62%) with those of the HOPDA hydrolases of P. putida KF715, P. pseudoalcaligenes KF707, and Burkholderia cepacia LB400, and also significant homology with those of other hydrolytic enzymes including esterase, transferase, and peptidase.

  • PDF

GTG as a Potential Translation Initiation Godon in Mitochondrial F1 ATPase $\alpha$-Subunit Gene(atpA) of Korean Ginseng (고려인삼의 $F_1$ ATPase $\alpha$-Subunit 유전자(atpA)의 구조적 특성)

  • Kim, Kab-Sig;Park, Ui-Sun;Choi, Kwan-Sam;Choi, Kwang-Tae
    • Journal of Ginseng Research
    • /
    • v.19 no.2
    • /
    • pp.127-133
    • /
    • 1995
  • The complete open reading frame (ORF) of o-subunit of the $F_1$ ATP synthase (atPA) in Korean ginseng mitochondria was identified by the sequence similarity with atPA genes in other plant mitochondria. The sequence alignment showed that the common translation initiation codon, ATG, in plant genes was replaced with GTG valid codon in Korean ginseng. The atPA gene from GTG to TGA termination codon was 1524 nucleotides long, and the sequence homology of nucleotides and deduced amino acids revealed high values of 92~97%. A deletion event of 6 nucleotides was observed at the 1468th nucleotide from the GTG in Korean ginseng, in contrast to that at the 1450th in other plants such as pea, common bean, soybean, sugar beet, and radish. An unidentified open reading frame (on7) was observed upstream of atmA ORF. No other ATG as an initiation codon was detected in the region between off and atmA ORF in Korean ginseng, although a pyrimidine cluster "TTTTCTTTT" was located in this region as in Oenothera and maize genes. It could be supposed that GTG codon in atpA gene of Korean ginseng mitochondria would act as an initiation codon as in microbial genes.ial genes.

  • PDF

Nucleotide Sequence Analysis and Expression of the Alginate Lyase Gene from Pseudomonas sp. W7 in Escherichia coli

  • Lee, Jong-Hee;Kang, Jung-Hwa;Kim, Young-Ok;Kim, Jin-Man;Kong, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.531-535
    • /
    • 1998
  • The gene encoding alginate lyase was isolated from a library constructed with the vector, pUC19, and expressed in Escherichia coli. The nucleotide sequence of the cloned alginate lyase gene (ALY) from Pseudomonas sp. W7 was determined. The nucleotide sequence revealed a 1,035 bp open reading frame (ORF), encoding 345 amino acid residues with a calculated molecular mass of 37,478 Da. The N-terminal amino acid sequences (15 residues) of purified alginate lyase corresponded to that of the deduced amino acid sequence.

  • PDF