• Title/Summary/Keyword: OPC replacement

Search Result 147, Processing Time 0.023 seconds

Optimization of ferrochrome slag as coarse aggregate in concretes

  • Yaragal, Subhash C.;Kumar, B. Chethan;Mate, Krishna
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.421-431
    • /
    • 2019
  • The alarming rate of depletion of natural stone based coarse aggregates is a cause of great concern. The coarse aggregates occupy nearly 60-70% by volume of concrete being produced. Research efforts are on to look for alternatives to stone based coarse aggregates from sustainability point of view. Response surface methodology (RSM) is adopted to study and address the effect of ferrochrome slag (FCS) replacement to coarse aggregate replacement in the ordinary Portland cement (OPC) based concretes. RSM involves three different factors (ground granulated blast furnace slag (GGBS) as binder, flyash (FA) as binder, and FCS as coarse aggregate), with three different levels (GGBS (0, 15, and 30%), FA (0, 15, and 30%) and FCS (0, 50, and 100%)). Experiments were carried out to measure the responses like, workability, density, and compressive strength of FCS based concretes. In order to optimize FCS replacement in the OPC based concretes, three different traditional optimization techniques were used (grey relational analysis (GRA), technique for order of preference by similarity (TOPSIS), and desirability function approach (DFA)). Traditional optimization techniques were accompanied with principal component analysis (PCA) to calculate the weightage of responses measured to arrive at the final ranking of replacement levels of GGBS, FA, and FCS in OPC based concretes. Hybrid combination of PCA-TOPSIS technique is found to be significant when compared to other techniques used. 30% GGBS and 50% FCS replacement in OPC based concrete was arrived at, to be optimal.

Effect of Relative Levels of Mineral Admixtures on Strength of Concrete with Ternary Cement Blend

  • Mala, Kanchan;Mullick, A.K.;Jain, K.K.;Singh, P.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.239-249
    • /
    • 2013
  • In the present scenario to fulfill the demands of sustainable construction, concrete made with multi-blended cement system of OPC and different mineral admixtures, is the judicious choice for the construction industry. Silica fume (SF) and fly ash (FA) are the most commonly used mineral admixtures in ternary blend cement systems. Synergy between the contributions of both on the mechanical properties of the concrete is an important factor. This study reports the effect of replacement of OPC by fly ash (20, 30, 40 and 50 % replacement of OPC) and/or silica fume (7 and 10 %) on the mechanical properties of concrete like compressive strength and split tensile strength, with three different w/b ratio of 0.3, 0.4 and 0.45. The results indicate that, as the total replacement level of OPC in concrete using ternary blend of OPC + FA + SF increases, the strength with respect to control mix increases up to certain replacement level and thereafter decreases. If the cement content of control mixes at each w/b ratio is kept constant, then as w/b ratio decreases, higher percentage of OPC can be replaced with FA + SF to get 28 days strength comparable to the control mix. A new method was proposed to find the efficiency factor of SF and FA individually in ternary blend cement system, based on principle of modified Bolomey's equation for predicting compressive strength of concrete using binary blend cement system. Efficiency factor for SF and FA were always higher in ternary blend cement system than their respective binary blend cement system. Split tensile strength of concrete using binary and ternary cement system were higher than OPC for a given compressive strength level.

A Study of Rheological Properties on Cement Paste System Mixed with Mineral Admixtures (광물혼화재가 혼합된 시멘트 페이스트 시스템의 레올로지 특성에 관한 연구)

  • 박대효;노명현;박춘근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.505-508
    • /
    • 2003
  • The rheological properties of cement paste system mixed with mineral admixture for the purpose of increasing the strength and improving durability and rheology of concrete were investigated. The results were as follows: The rheological properties of one-ingredient paste system were improved with increasing the dosage of superplasticizer. For two-ingredients paste system, increasing the replacement rate of BFS(blast furnace slag) and FA(fly ash), the yield value and plastic viscosity were decreased compared with non-replacement. In the OPC(ordinary portland cement)-SF(silica fume) system, increasing the replacement rate of SF, the plastic viscosity and yield value increased linearly. In three-ingredients paste system, both OPC-BFS-SF and OPC-FA-SF system, the rheological properties were improved compared with the only replacement of SF. Both two- and three- ingredients paste system, the rheological properties using BFS were improved more than FA.

  • PDF

Potential use of mine tailings and fly ash in concrete

  • Sunil, B.M.;Manjunatha, L.S.;Ravi, Lolitha;Yaragal, Subhash C.
    • Advances in concrete construction
    • /
    • v.3 no.1
    • /
    • pp.55-69
    • /
    • 2015
  • Tailing Material (TM) and Fly Ash (FA) are obtained as waste products from the mining and thermal industries. Studies were carried out to explore the possibility of utilizing TM as a part replacement to fine aggregate and FA as a part replacement to cement, in concrete mixes. The effect of replacing fine aggregate by TM and cement by FA on the standard sized specimen for compressive strength, split tensile strength, and flexural strengths are evaluated in this study. The concrete mix of M40 grade was adopted with water cement ratio equal to 0.40. Concrete mix with 35% TM and 65% natural sand (TM35/S65) has shown superior performance in strength as against (TM0/S100, TM30/S70, TM40/S60, TM50/S50, and TM60/S40). For this composition, studies were performed to propose the optimal replacement of Ordinary Portland Cement (OPC) by FA (Replacement levels studied were 20%, 30%, 40% and 50%). Replacement level of 20% OPC by FA, has shown about 0-5% more compressive strength as against the control mix, for both 28 day and 56 days of water curing. Interestingly results of split tensile and flexural strengths for 20% OPC replaced by FA, have shown strengths equal to that of no replacement (control mix).

Effect of GGBS and fly ash on mechanical strength of self-compacting concrete containing glass fibers

  • Kumar, Ashish;Singh, Abhinav;Bhutani, Kapil
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.429-437
    • /
    • 2021
  • In the era of building engineering the intensification of Self Compacting Concrete (SCC) is world-shattering magnetism. It has lot of rewards over ordinary concrete i.e., enrichment in production, cutback in manpower, brilliant retort to load and vibration along with improved durability. In the present study, the mechanical strength of CM-2 (SCC containing 10% of rice husk ash (RHA) as cement replacement and 600 grams of glass fibers per cubic meter) was investigated at various dosages of cement replacement by fly ash (FA) and GGBS. A total of 17 SCC mixtures including two control SCC mixtures (CM-1 and CM-2) were developed for investigating fresh and hardened properties in which, ten ternary cementitious blends of SCC by blending OPC+RHA+FA, OPC+RHA+GGBS and five quaternary cementitious blends (OPC+RHA+FA+GGBS) at different replacement dosages of FA and GGBS were developed with reference to CM-2. For constant water-cement ratio (0.42) and dosage of SP (2.5%), the addition of glass fibers (600 grams/m3) in CM-1 i.e., CM-2 shows lower workability but higher mechanical strength. While fly ash based ternary blends (OPC+RHA+FA) show better workability but lower mechanical strength as FA content increases in comparison to GGBS based ternary blends (OPC+RHA+GGBS) on increasing GGBS content. The pattern for mixtures appeared to exhibit higher workablity as that of the concentration of FA+GGBS rises in quaternary blends (OPC+RHA+FA+GGBS). A decrease in compressive strength at 7-days was noticed with an increase in the percentage of FA and GGBS as cement replacement in ternary and quaternary blended mixtures with respect to CM-2. The highest 28-days compressive strength (41.92 MPa) was observed for mix QM-3 and the lowest (33.18 MPa) for mix QM-5.

Mechanical behaviour of waste powdered tiles and Portland cement treated soft clay

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Mustaffa, Zahiraniza;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.37-47
    • /
    • 2019
  • The main objective of this study is to evaluate and compare the efficiency of ordinary Portland cement (OPC) in enhancing the unconfined compressive strength of soft soil alone and soft soil mixed with recycled tiles. The recycled tiles have been used to treat soft soil in a previous research by Al-Bared et al. (2019) and the results showed significant improvement, but the improved strength value was for samples treated with low cement content (2%). Hence, OPC is added alone in this research in various proportions and together with the optimum value of recycled tiles in order to investigate the improvement in the strength. The results of the compaction tests of the soft soil treated with recycled tiles and 2, 4, and 6% OPC revealed an increment in the maximum dry density and a decrement in the optimum moisture content. The optimum value of OPC was found to be 6%, at which the strength was the highest for both samples treated with OPC alone and samples treated with OPC and 20% recycled tiles. Under similar curing time, the strength of samples treated with recycled tiles and OPC was higher than the treated soil with the same percentage of OPC alone. The stress-strain curves showed ductile plastic behaviour for the untreated soft clay and brittle behaviour for almost all treated samples with OPC alone and OPC with recycled tiles. The microstructural tests indicated the formation of new cementitious products that were responsible for the improvement of the strength, such as calcium aluminium silicate hydrate. This research promotes recycled tiles as a green stabiliser for soil stabilisation capable of reducing the amount of OPC required for ground improvement. The replacement of OPC with recycled tiles resulted in higher strength compared to the control mix and this achievement may results in reducing both OPC in soil stabilisation and the disposal of recycled tiles into landfills.

Sulfate and Freeze-thaw Resistance Characteristic of Multi-component Cement Concrete Considering Marine Environment (해양환경을 고려한 다성분계 시멘트 콘크리트의 황산염 및 동결융해 저항 특성)

  • Kim, Myung-Sik;Beak, Dong-Il;Kang, Jun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.26-32
    • /
    • 2012
  • Recently, concrete using multicomponent blended cement has been required to increase the freeze-thaw and sulfate resistances of concrete structures exposed to a marine environment. Thus, the purpose of this study was to propose the use of concrete containing multicomponent blended cement as one of the alternatives for concrete structures exposed to a marine environment. For this purpose, batches of concrete containing ordinary portland cement (OPC), binary blended cement (OPC-G, G: ground granulated blast slag), ternary blended cement (OPC-GF, F: fly ash), and quaternary blended cement (OPC-GFM, M: mata-kaolin) were made using a water-binder ratio of 50%. Then, the durability levels, including thesulfate and freeze-thaw resistances, were estimated for concrete samples containing OPC, OPC-G, OPC-GF, and OPC-GFM. It was observed from the tests that the durability levels of the concrete samples containing OPC-G and OPC-GF were found to be much better than that of the concrete containing OPC. The optimum mixing proportions were a40% replacement ratio of ground granulated blast slag for the binary blended cement and a30% replacement ratio of ground granulated blast slag and 10% fly ash for the ternary blended cement.

Effect of magnesium sulphate solution on compressive strength and sorptivity of blended concrete

  • Jena, Trilochan;Panda, Kishor C.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.267-278
    • /
    • 2020
  • This paper reports on the result of an experimental investigation carried out to study the compressive strength and sorptivity properties of blended cement concrete exposed to 5% and 10% MgSO4 solution using fly ash (FA) and silpozz. Usually in sulphate environment the minimum grade of concrete is M30 and the mix design is done for target mean strength of 39 MPa. Silpozz is manufactured by burning of agro-waste rice husk in designed furnace in between 600° to 700℃ which is one of the main agricultural residues obtained from the outer covering of rice grains during the milling process. There are four mix series taken with control mix. The control mix made 0% replacement of FA and silpozz with Ordinary Portland Cement (OPC). The first mix series made 0% FA and 10-30% replacement of silpozz with OPC. The second mix series made with 10% FA and 10-40% replacement of silpozz with OPC. The third mix series made 20% FA and 10-30% replacement of silpozz with OPC and the fourth mix series made 30% FA and 10-20% silpozz replaced with OPC. The samples (cubes) are prepared and cured in normal water and 5% and 10% MgSO4 solution for 7, 28 and 90 days. The studied parameters are compressive strength and strength deterioration factor (SDF) for 7, 28 and 90 days. The water absorption and sorptivity tests have been done after 28 days of normal water and magnesium sulphate solution curing. The investigation reflects that the blended cement concrete incorporating FA and silpozz showing better resistance against MgSO4 solution when compared to normal water curing (NWC) samples.

Physical Properties of Cement Using Slag as Raw Mix of Clinker (슬래그를 클링커 혼합원료로 사용한 시멘트의 물리적 특성)

  • Young-Jun Lee;Do-young Kwon;Bilguun Mend;Yong-Sik Chu
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.12-20
    • /
    • 2024
  • The global cement industry emits approximately 2.9 billion tons of greenhouse gases, of which 1.74-1.89 billion tons are emitted from limestone, which is the main raw material for clinkers. Therefore, the feasibility of using slag, a non-carbonated CaO-based raw material, must be investigated, and the physical properties of cement must be considered. In this study, the mixing ratios of the raw mix and properties of cement were analyzed. The CaCO3 replacement ratio was limited when one type of slag was used; however, when the mixed slag was utilized, the CaCO3 replacement ratio increased by more than 12 %. The compressive strength of the slag-incorporated cement was lower than that of Ordinary Portland Cement (OPC). Therefore, the lime saturation factor (LSF) of the raw mix and fineness of the cement were increased to improve the compressive strength. The compressive strength of cement with improved fineness was similar to that of OPC for a CaCO3 replacement ratio of up to 6 %, and it decreased as the CaCO3 replacement ratio was increased to 9 %. When both fineness and LSF were increased, the compressive strength and flow value of the cement with a CaCO3 replacement ratio of 12 % were similar to that of OPC.

Variation of Critical Chloride Content of Rebar Embedded in Concrete with Admixture (혼화재 혼입에 따른 콘크리트에 매립된 철근의 부식 임계 염화물량의 변화)

  • Park, Jang-Hyun;Lee, Yun-Su;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.511-520
    • /
    • 2019
  • The critical chloride content of rebar embedded in concrete was experimentally evaluated according to the admixture replacement ratio and admixture type. Four types of reinforced concrete were mixed OPC 100%, OPC 70% + GGBFS 30%, OPC 40% + GGBFS 60%, and OPC 40% + GGBFS 40% + FA 20%. NaCl solution was supplied to the specimens, and the open circuit potential of the embedded rebar was monitored. The specimens determined to initiate corrosion were cut at intervals of 5mm from the NaCl solution supply surface and conducted to chlorine ion profile. Corrosion initiation time of rebar embedded in concrete was delayed as the admixture replacement ratio increased. Looking at the critical chloride content of the types of reinforced concrete, it was highest in OPC 1.46kg/㎥, followed in order by S30 0.98kg/㎥, TBC 0.74kg/㎥, and S60 0.71kg/㎥.