• Title/Summary/Keyword: OLSR protocol

Search Result 36, Processing Time 0.025 seconds

Analysis of Link Stability Based on Zone Master for Wireless Networks (무선네트워크에서 존 마스터 기반의 링크 안정성 해석)

  • Wen, Zheng-Zhu;Kim, Jeong-Ho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.3
    • /
    • pp.73-78
    • /
    • 2019
  • Due to frequent topology changes in wireless networks, inter-node link disconnection and path re-establishment occur, causing problems such as overloading control messages in the network. In this paper, to solve the problems such as link disconnection and control message overload, we perform path setup in three steps of the neighbor node discovery process, the route discovery process, and the route management process in the wireless network environment. The link stability value is calculated using the information of the routing table. Then, when the zone master monitors the calculated link value and becomes less than the threshold value, it predicts the link disconnection and performs the path reset to the corresponding transmitting and receiving node. The proposed scheme shows a performance improvement over the existing OLSR protocol in terms of data throughput, average path setup time, and data throughput depending on the speed of the mobile node as the number of mobile nodes changes.

Performance Comparison of MISP-based MANET Strong DAD Protocol

  • Kim, Sang-Chul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3449-3467
    • /
    • 2015
  • A broadcast operation is the fundamental transmission technique in mobile ad-hoc networks (MANETs). Because a broadcast operation can cause a broadcast storm, only selected forwarding nodes have the right to rebroadcast a broadcast message among the one-hop and two-hop neighboring nodes of a sender. This paper proposes the maximum intersection self-pruning (MISP) algorithm to minimize broadcasting redundancy. Herein, an example is given to help describe the main concept of MISP and upper bounds of forward node have been derived based on induction. A simulation conducted demonstrated that when conventional blind flooding (BF), self-pruning (SP), an optimized link state routing (OLSR) multipoint relay (MPR) set, and dominant pruning (DP), are replaced with the MISP in executing Strong duplicate address detection (DAD), the performances in terms of the energy consumption, upper bounds of the number of forward nodes, and message complexity have been improved. In addition, to evaluate the performance in reference to the link error probability, Pe, an enhancement was achieved by computing a proposed retransmission limit, S, for error recovery based on this probability. Retransmission limit control is critical for efficient energy consumption of MANET nodes operating with limited portable energy where Strong DAD reacts differently to link errors based on the operational procedures.

Design and Evaluation of Hybrid Wireless Mesh Networks (이종 무선 메쉬 네트워크 설계 및 성능평가)

  • Kim, Tae-Woo;Kwak, Jung-Nam;Kang, Nam-He;Kim, Young-Han
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.257-260
    • /
    • 2005
  • In this paper we design and evaluate Hybrid Wireless Mesh Networks on IEEE 802.11-based network. So we analysis the CWMNs and BWMNs to integrate them. The CWMNs of Ad hoc Mode cannot be directly connected to the BWMNs of Infrastructure Mode because they have different frame types. We propose the new effective HWMNs scheme using DYMO than OLSR protocol for the inter-operability and the mobility

  • PDF

CASPER: Congestion Aware Selection of Path with Efficient Routing in Multimedia Networks

  • Obaidat, Mohammad S.;Dhurandher, Sanjay K.;Diwakar, Khushboo
    • Journal of Information Processing Systems
    • /
    • v.7 no.2
    • /
    • pp.241-260
    • /
    • 2011
  • In earlier days, most of the data carried on communication networks was textual data requiring limited bandwidth. With the rise of multimedia and network technologies, the bandwidth requirements of data have increased considerably. If a network link at any time is not able to meet the minimum bandwidth requirement of data, data transmission at that path becomes difficult, which leads to network congestion. This causes delay in data transmission and might also lead to packet drops in the network. The retransmission of these lost packets would aggravate the situation and jam the network. In this paper, we aim at providing a solution to the problem of network congestion in mobile ad hoc networks [1, 2] by designing a protocol that performs routing intelligently and minimizes the delay in data transmission. Our Objective is to move the traffic away from the shortest path obtained by a suitable shortest path calculation algorithm to a less congested path so as to minimize the number of packet drops during data transmission and to avoid unnecessary delay. For this we have proposed a protocol named as Congestion Aware Selection Of Path With Efficient Routing (CASPER). Here, a router runs the shortest path algorithm after pruning those links that violate a given set of constraints. The proposed protocol has been compared with two link state protocols namely, OSPF [3, 4] and OLSR [5, 6, 7, 8].The results achieved show that our protocol performs better in terms of network throughput and transmission delay in case of bulky data transmission.

Efficient Crossroad Wireless LAN Vehicular Communication Network for Remote Driving and Monitoring Autonomous Vehicle (무인자동차 원격운행 및 모니터링을 위한 효율적인 사거리 교차로 무선랜 자동차통신망)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.3
    • /
    • pp.387-392
    • /
    • 2014
  • Now a days, there are various application functions to transmit from vehicles to the Internet and vice versa. And the communication can be operated through a roadside infrastructure including with possible use of routing protocols. Specifically, autonomous vehicles for remote driving and monitoring requires transmitting of high depth of multimedia such as video. Especially in a populated urban area, an efficient network is vital because of handling a great amount of the data. Therefore, in this paper, efficient network topology for a crossroad in urban area is suggested by performance evaluation of vehicular networks using a wireless LAN and a routing protocol. For the performance evaluation, various vehicular network topologies are designed and simulated in OPNet simulator.

Load Balancing and Mobility Management in Multi-homed Wireless Mesh Networks

  • Tran, Minh Tri;Kim, Young-Han;Lee, Jae-Hwoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.5
    • /
    • pp.959-975
    • /
    • 2011
  • Wireless mesh networks enlarge the wireless coverage area by interconnecting relatively stationary wireless routers (mesh routers). As wireless mesh networks are envisioned to provide high-bandwidth broadband Internet service to a large community of users, the Internet gateway, which acts as a central point of Internet attachment for the mesh networks, is likely to suffer heavily from the scramble for shared wireless resources because of aggregated traffic toward the Internet. It causes performance decrement on end-to-end transmissions. We propose a scheme to balance the load in a mesh network based on link quality variation to different Internet gateways. Moreover, under the mesh coverage, mobile nodes can move around and connect to nearby mesh routers while still keeping the connections to the Internet through the best gateway in terms of link quality. In this structure, gateways perform the balancing procedure through wired links. Information about gateways and mobile node's location is distributed appropriately so that every mesh router can quickly recognize the best gateway as well as the positions of mobile nodes. This distributed information assists mobile nodes to perform fast handoff. Significant benefits are shown by the performance analysis.