• 제목/요약/키워드: OLS Multiple Regression Analysis

검색결과 25건 처리시간 0.019초

한국의 국제선 항공수요 예측과 검토 (Forecast and Review of International Airline demand in Korea)

  • 김영록
    • 한국항공운항학회지
    • /
    • 제27권3호
    • /
    • pp.98-105
    • /
    • 2019
  • In the past 30 years, our aviation demand has been growing continuously. As such, the importance of the demand forecasting field is increasing. In this study, the factors influencing Korea's international air demand were selected, and the international air demand was analyzed, forecasted and reviewed through OLS multiple regression analysis. As a result, passenger demand was affected by GDP per capita, oil price and exchange rate, while cargo demand was affected by GDP per capita and private consumption growth rate. In particular, passenger demand was analyzed to be sensitive to temporary external shocks, and cargo demand was more affected by economic variables than temporary external shocks. Demand forecasting, OLS multiple regression analysis, passenger demand, cargo demand, transient external shocks, economic variables.

의료비 결정요인 분석을 위한 계량적 모형 고안 (A Quantitative Model for the Projection of Health Expenditure)

  • 김한중;이영두;남정모
    • Journal of Preventive Medicine and Public Health
    • /
    • 제24권1호
    • /
    • pp.29-36
    • /
    • 1991
  • A multiple regression analysis using ordinary least square (OLS) is frequently used for the projection of health expenditure as well as for the identification of factors affecting health care costs. Data for the analysis often have mixed characteristics of time series and cross section. Parameters as a result of OLS estimation, in this case, are no longer the best linear unbiased estimators (BLUE) because the data do not satisfy basic assumptions of regression analysis. The study theoretically examined statistical problems induced when OLS estimation was applied with the time series cross section data. Then both the OLS regression and time series cross section regression (TSCS regression) were applied to the same empirical da. Finally, the difference in parameters between the two estimations were explained through residual analysis.

  • PDF

시설물 유형에 따른 화재 발생의 공간 계량 분석 (Spatial Econometrics Analysis of Fire Occurrence According to Type of Facilities)

  • 서민송;유환희
    • 한국측량학회지
    • /
    • 제37권3호
    • /
    • pp.129-141
    • /
    • 2019
  • 최근 급속도로 성장하는 도시에는 많은 인구와 시설물들이 증가하고 집중이 심화함에 따라 재해와 재난에 취약함을 나타낸다. 특히, 화재는 우리나라의 도시 내에서 교통사고와 더불어 가장 많이 발생하는 재해 중 하나로 많은 인명 및 재산피해를 준다. 따라서 본 연구에서는 화재 발생에 대한 영향요인을 분석하기 위해 진주시를 대상으로 2007년부터 2017년까지 10년간 화재데이터를 취득하였다. 먼저 공간 자기 상관성 분석을 시행하여 진주시 화재 발생의 공간 분포 패턴을 파악한 후, 상관관계 및 다중 회귀 분석을 통해 인문 사회 요인과 물리적 요인 간의 공간적 종속성 및 비정상성을 확인하였고 이를 토대로 화재 발생 위치와 각 요인별 위치를 고려하여 공간 가중치를 활용한 OLS 회귀 분석을 실시하였다. 그 결과로 첫째, 진주시 화재 발생의 LISA분석 결과 화재 발생 빈도가 높은 용도지역은 중심상업지역, 공업지역, 주거지역 순으로 나타났다. 둘째, 인구 사회적 변수 및 물리적 변수를 통합하여 다중회귀분석의 최종 모형으로 도출된 요인들을 중심으로 공간가중치를 적용하여 OLS회귀모형을 분석한 결과 제2종 근린생활시설이 화재 발생과 가장 높은 상관성을 보였으며 다음으로 단독주택, 판매시설, 제1종 근린생활시설, 가구수의 순으로 상관성이 있는 것으로 분석되었다. 이러한 연구 결과를 통해 도시 지역의 시설물별 화재 발생 요인을 분석하고 화재 안전대책을 수립하는데 유용한 자료로 활용될 것으로 예상된다.

Analysis of Influencing Factors on Air Passenger and Cargo Transport between Korea, China and Japan

  • Lim, Jae-Hwan;Kim, Young-Rok;Choi, Yun-Chul;Kang, Dal-Won
    • 한국항공운항학회지
    • /
    • 제29권2호
    • /
    • pp.106-110
    • /
    • 2021
  • In this study, the main factors affecting the number of passengers and cargo volume transported by air between Korea, China and Japan over the past 20 years are to be identified. For the analysis, data from three countries' GDP and per capita as well as exchange rates and international oil prices were used, and OLS multiple regression analysis and fixed effect analysis were performed. As a result of the analysis, both the number of passengers and cargo volume transported by air showed a negative (-) direction for GDP, which represents the country's economic power, and a positive (+) direction, for per capita GDP, which represents income level. And the increase in the exchange rate between China and Japan acted in a positive (+) direction on the increase in the number of passengers, and the effect of oil prices was found to be limited.

Analysis of Factors Influencing Korea's Air Trade with China

  • Lim, Jae-Hwan;Kim, Young-Rok;Choi, Yun-Chul;Choi, Yu-Jeong
    • 한국항공운항학회지
    • /
    • 제29권3호
    • /
    • pp.111-116
    • /
    • 2021
  • This study aims to identify the representative factors affecting the air trade between the two countries over the past 20 years, targeting China, Korea's largest trading partner for air transport. In the analysis, the two countries' GDP, GDP per capita, and tariff rates, as well as exchange rates, international oil prices, and FTAs were used as variables. For the analysis method, OLS multiple regression analysis was performed, and each was analyzed by dividing the export amount, import amount, and trade amount. As a result of the analysis, China's GDP and Korea's GDP per capita showed a positive (+) direction, an increase in the exchange rate resulted in an increase in the amount of trade, and an increase in the tariff rate resulted in a decrease in the amount of trade. Whether the FTA was concluded or not acted as a factor in increasing the amount of trade between the two countries.

Wage Determinants Analysis by Quantile Regression Tree

  • Chang, Young-Jae
    • Communications for Statistical Applications and Methods
    • /
    • 제19권2호
    • /
    • pp.293-301
    • /
    • 2012
  • Quantile regression proposed by Koenker and Bassett (1978) is a statistical technique that estimates conditional quantiles. The advantage of using quantile regression is the robustness in response to large outliers compared to ordinary least squares(OLS) regression. A regression tree approach has been applied to OLS problems to fit flexible models. Loh (2002) proposed the GUIDE algorithm that has a negligible selection bias and relatively low computational cost. Quantile regression can be regarded as an analogue of OLS, therefore it can also be applied to GUIDE regression tree method. Chaudhuri and Loh (2002) proposed a nonparametric quantile regression method that blends key features of piecewise polynomial quantile regression and tree-structured regression based on adaptive recursive partitioning. Lee and Lee (2006) investigated wage determinants in the Korean labor market using the Korean Labor and Income Panel Study(KLIPS). Following Lee and Lee, we fit three kinds of quantile regression tree models to KLIPS data with respect to the quantiles, 0.05, 0.2, 0.5, 0.8, and 0.95. Among the three models, multiple linear piecewise quantile regression model forms the shortest tree structure, while the piecewise constant quantile regression model has a deeper tree structure with more terminal nodes in general. Age, gender, marriage status, and education seem to be the determinants of the wage level throughout the quantiles; in addition, education experience appears as the important determinant of the wage level in the highly paid group.

지리적가중회귀분석을 이용한 관외입원진료비 비율의 지역 간 차이 분석 (Analysis on the Regional Variation of the Rate of Inpatient Medical Costs in Local-Out: Geographically Weighted Regression Approach)

  • 조은경;이광수
    • 보건의료산업학회지
    • /
    • 제8권2호
    • /
    • pp.11-22
    • /
    • 2014
  • This study purposed to analyze the regional variation of the local-out rates of inpatient services. Multiple data sources collected from National Health Insurance Corporation and statistics Korea were merged to produce the analysis data set. The unit of analysis in this study was city, Gun, Gu, and all of them were included in analysis. The dependent variable measured the local-out rate of inpatient cost in study regions. Local environments were measured by variables in three dimensions: provider factors, socio-demographic factors, and health status. Along with the traditional ordinary least square (OLS) based regression model, geographically weighted regression (GWR) model were applied to test their effects. SPSS v21 and ArcMap v10.2 were applied for the statistical analysis. Results from OLS regression showed that most variables had significant relationships with the local-out rate of inpatient services. However, some variables had shown diverse directions in regression coefficients depending on regions in GWR. This implied that the study variables might not have consistent effects and they may varied depending the locations.

Modeling of compressive strength of HPC mixes using a combined algorithm of genetic programming and orthogonal least squares

  • Mousavi, S.M.;Gandomi, A.H.;Alavi, A.H.;Vesalimahmood, M.
    • Structural Engineering and Mechanics
    • /
    • 제36권2호
    • /
    • pp.225-241
    • /
    • 2010
  • In this study, a hybrid search algorithm combining genetic programming with orthogonal least squares (GP/OLS) is utilized to generate prediction models for compressive strength of high performance concrete (HPC) mixes. The GP/OLS models are developed based on a comprehensive database containing 1133 experimental test results obtained from previously published papers. A multiple least squares regression (LSR) analysis is performed to benchmark the GP/OLS models. A subsequent parametric study is carried out to verify the validity of the models. The results indicate that the proposed models are effectively capable of evaluating the compressive strength of HPC mixes. The derived formulas are very simple, straightforward and provide an analysis tool accessible to practicing engineers.

Analysis of Indonesian Rubber Export Supply for 1995-2015

  • MULYANI, Mulyani;KUSNANDAR, Kusnandar;ANTRIYANDARTI, Ernoiz
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권1호
    • /
    • pp.93-102
    • /
    • 2021
  • This study aims is to determine the factors that influence Indonesian rubber export supply based on the export destination countries. Indonesian rubber export supply is thought to be influenced by the variables like the volume of Indonesia rubber exports, the price of Indonesian natural rubber, the volume of domestic rubber production, the export volume of the previous period, the rupiah exchange rate against US$, the interest rate and real Gross Domestic Product (GDP). The data used is the annual time series from 1995-2015 based on export countries encompassing the United States, China, and Japan. Multiple linear regression with the Ordinary Least Square (OLS) method is applied to analyse the data. The results showed that the volume of Indonesian rubber exports to China is not influenced by domestic natural rubber prices and the Rupiah exchange rate against the Chinese Yuan. The volume of Indonesian rubber exports to Japan is influenced by the volume of domestic rubber production. The volume of Indonesian rubber exports to the three destination countries is influenced by the volume of domestic rubber production, interest rate, and real GDP.

일반계 고등학생 사교육비 지출에 대한 베이지안 분위회귀모형 분석 (Bayesian quantile regression analysis of private education expenses for high scool students in Korea)

  • 오현숙
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권6호
    • /
    • pp.1457-1469
    • /
    • 2017
  • 일반계 고등학생의 사교육비 지출은 대학입시와 맞물려 최근 더욱 증가하고 있는 동시에 가구소득 수준, 지역 등에 따라 양극화되고 있다. 기존의 사교육비 연구는 주로 다중회귀모형을 토대로 최소자승법을 이용하였으나 자료가 최소자승법의 기본가정인 정규성과 등분산성을 만족하지 않으면 분석결과의 신뢰성에 대한 문제가 발생된다. 본 연구는 2015년도 사교육실태조사자료에 대하여 정규성과 등분산성이 성립되지 않음을 확인하고 이를 통제할 수 있는 베이지안 분위회귀모형을 적합한 후 깁스 샘플링 방법을 이용하여 사교육비 지출규모 수준 (분위수)에 따라 영향요인들을 분석하였다. 분석결과 학생의 성별, 부모의 나이, 방과후 학교 참여시간과 비용은 사교육비 지출규모에 의미있는 영향을 주지 못하였다. 가구소득은 사교육비 지출규모의 모든 수준에서 동일하게 영향을 주는 요인으로 파악되었다. 그 외, 거주지역, 총사교육시간, 학생의 성적, 부모의 교육정도, 가구의 경제활동주체, 방과후 학교 참여여부, EBS 교재비용은 사교육비 지출 규모의 수준에 따라 다르게 영향을 주었다.