• Title/Summary/Keyword: OLS Multiple Regression Analysis

Search Result 25, Processing Time 0.023 seconds

Forecast and Review of International Airline demand in Korea (한국의 국제선 항공수요 예측과 검토)

  • Kim, Young-Rok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.3
    • /
    • pp.98-105
    • /
    • 2019
  • In the past 30 years, our aviation demand has been growing continuously. As such, the importance of the demand forecasting field is increasing. In this study, the factors influencing Korea's international air demand were selected, and the international air demand was analyzed, forecasted and reviewed through OLS multiple regression analysis. As a result, passenger demand was affected by GDP per capita, oil price and exchange rate, while cargo demand was affected by GDP per capita and private consumption growth rate. In particular, passenger demand was analyzed to be sensitive to temporary external shocks, and cargo demand was more affected by economic variables than temporary external shocks. Demand forecasting, OLS multiple regression analysis, passenger demand, cargo demand, transient external shocks, economic variables.

A Quantitative Model for the Projection of Health Expenditure (의료비 결정요인 분석을 위한 계량적 모형 고안)

  • Kim, Han-Joong;Lee, Young-Doo;Nam, Chung-Mo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.24 no.1 s.33
    • /
    • pp.29-36
    • /
    • 1991
  • A multiple regression analysis using ordinary least square (OLS) is frequently used for the projection of health expenditure as well as for the identification of factors affecting health care costs. Data for the analysis often have mixed characteristics of time series and cross section. Parameters as a result of OLS estimation, in this case, are no longer the best linear unbiased estimators (BLUE) because the data do not satisfy basic assumptions of regression analysis. The study theoretically examined statistical problems induced when OLS estimation was applied with the time series cross section data. Then both the OLS regression and time series cross section regression (TSCS regression) were applied to the same empirical da. Finally, the difference in parameters between the two estimations were explained through residual analysis.

  • PDF

Spatial Econometrics Analysis of Fire Occurrence According to Type of Facilities (시설물 유형에 따른 화재 발생의 공간 계량 분석)

  • Seo, Min Song;Yoo, Hwan Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.129-141
    • /
    • 2019
  • In recent years, fast growing cities in Korea are showing signs of being vulnerable to more disasters as their population and facilities increase and intensify. In particular, fire is one of the most common disasters in Korea's cities, along with traffic accidents. Therefore, in this study, we analyze what type of factors affect the fire that threatens urban people. Fire data were acquired for 10 years, from 2007 to 2017, in Jinju, Korea. Spatial distribution pattern of fire occurrence in Jinju was assessed through the spatial autocorrelation analysis. First, spatial autocorrelation analysis was carried out to grasp the spatial distribution pattern of fire occurrence in Jinju city. In addition, correlation and multiple regression analysis were used to confirm spatial dependency and abnormality among factors. Based on this, OLS (Ordinary Least Square) regression analysis was performed using space weighting considering fire location and spatial location of each facility. As a result, First, LISA (Local Indicator of Spatial Association) analysis of the occurrence of fire in Jinju shows that the most central commercial area are fire department, industrial area, and residential area. Second, the OLS regression model was analyzed by applying spatial weighting, focusing on the most derived factors of multiple regression analysis, by integrating population and social variables and physical variables. As a result, the second kind of neighborhood living facility showed the highest correlation with the fire occurrence, followed by the following in the order of single house, sales facility, first type of neighborhood living facility, and number of households. The results of this study are expected to be useful for analyzing the fire occurrence factors of each facility in urban areas and establishing fire safety measures.

Analysis of Influencing Factors on Air Passenger and Cargo Transport between Korea, China and Japan

  • Lim, Jae-Hwan;Kim, Young-Rok;Choi, Yun-Chul;Kang, Dal-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.2
    • /
    • pp.106-110
    • /
    • 2021
  • In this study, the main factors affecting the number of passengers and cargo volume transported by air between Korea, China and Japan over the past 20 years are to be identified. For the analysis, data from three countries' GDP and per capita as well as exchange rates and international oil prices were used, and OLS multiple regression analysis and fixed effect analysis were performed. As a result of the analysis, both the number of passengers and cargo volume transported by air showed a negative (-) direction for GDP, which represents the country's economic power, and a positive (+) direction, for per capita GDP, which represents income level. And the increase in the exchange rate between China and Japan acted in a positive (+) direction on the increase in the number of passengers, and the effect of oil prices was found to be limited.

Analysis of Factors Influencing Korea's Air Trade with China

  • Lim, Jae-Hwan;Kim, Young-Rok;Choi, Yun-Chul;Choi, Yu-Jeong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.3
    • /
    • pp.111-116
    • /
    • 2021
  • This study aims to identify the representative factors affecting the air trade between the two countries over the past 20 years, targeting China, Korea's largest trading partner for air transport. In the analysis, the two countries' GDP, GDP per capita, and tariff rates, as well as exchange rates, international oil prices, and FTAs were used as variables. For the analysis method, OLS multiple regression analysis was performed, and each was analyzed by dividing the export amount, import amount, and trade amount. As a result of the analysis, China's GDP and Korea's GDP per capita showed a positive (+) direction, an increase in the exchange rate resulted in an increase in the amount of trade, and an increase in the tariff rate resulted in a decrease in the amount of trade. Whether the FTA was concluded or not acted as a factor in increasing the amount of trade between the two countries.

Wage Determinants Analysis by Quantile Regression Tree

  • Chang, Young-Jae
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.2
    • /
    • pp.293-301
    • /
    • 2012
  • Quantile regression proposed by Koenker and Bassett (1978) is a statistical technique that estimates conditional quantiles. The advantage of using quantile regression is the robustness in response to large outliers compared to ordinary least squares(OLS) regression. A regression tree approach has been applied to OLS problems to fit flexible models. Loh (2002) proposed the GUIDE algorithm that has a negligible selection bias and relatively low computational cost. Quantile regression can be regarded as an analogue of OLS, therefore it can also be applied to GUIDE regression tree method. Chaudhuri and Loh (2002) proposed a nonparametric quantile regression method that blends key features of piecewise polynomial quantile regression and tree-structured regression based on adaptive recursive partitioning. Lee and Lee (2006) investigated wage determinants in the Korean labor market using the Korean Labor and Income Panel Study(KLIPS). Following Lee and Lee, we fit three kinds of quantile regression tree models to KLIPS data with respect to the quantiles, 0.05, 0.2, 0.5, 0.8, and 0.95. Among the three models, multiple linear piecewise quantile regression model forms the shortest tree structure, while the piecewise constant quantile regression model has a deeper tree structure with more terminal nodes in general. Age, gender, marriage status, and education seem to be the determinants of the wage level throughout the quantiles; in addition, education experience appears as the important determinant of the wage level in the highly paid group.

Analysis on the Regional Variation of the Rate of Inpatient Medical Costs in Local-Out: Geographically Weighted Regression Approach (지리적가중회귀분석을 이용한 관외입원진료비 비율의 지역 간 차이 분석)

  • Jo, Eun-Kyung;Lee, Kwang-Soo
    • The Korean Journal of Health Service Management
    • /
    • v.8 no.2
    • /
    • pp.11-22
    • /
    • 2014
  • This study purposed to analyze the regional variation of the local-out rates of inpatient services. Multiple data sources collected from National Health Insurance Corporation and statistics Korea were merged to produce the analysis data set. The unit of analysis in this study was city, Gun, Gu, and all of them were included in analysis. The dependent variable measured the local-out rate of inpatient cost in study regions. Local environments were measured by variables in three dimensions: provider factors, socio-demographic factors, and health status. Along with the traditional ordinary least square (OLS) based regression model, geographically weighted regression (GWR) model were applied to test their effects. SPSS v21 and ArcMap v10.2 were applied for the statistical analysis. Results from OLS regression showed that most variables had significant relationships with the local-out rate of inpatient services. However, some variables had shown diverse directions in regression coefficients depending on regions in GWR. This implied that the study variables might not have consistent effects and they may varied depending the locations.

Modeling of compressive strength of HPC mixes using a combined algorithm of genetic programming and orthogonal least squares

  • Mousavi, S.M.;Gandomi, A.H.;Alavi, A.H.;Vesalimahmood, M.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.2
    • /
    • pp.225-241
    • /
    • 2010
  • In this study, a hybrid search algorithm combining genetic programming with orthogonal least squares (GP/OLS) is utilized to generate prediction models for compressive strength of high performance concrete (HPC) mixes. The GP/OLS models are developed based on a comprehensive database containing 1133 experimental test results obtained from previously published papers. A multiple least squares regression (LSR) analysis is performed to benchmark the GP/OLS models. A subsequent parametric study is carried out to verify the validity of the models. The results indicate that the proposed models are effectively capable of evaluating the compressive strength of HPC mixes. The derived formulas are very simple, straightforward and provide an analysis tool accessible to practicing engineers.

Analysis of Indonesian Rubber Export Supply for 1995-2015

  • MULYANI, Mulyani;KUSNANDAR, Kusnandar;ANTRIYANDARTI, Ernoiz
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.93-102
    • /
    • 2021
  • This study aims is to determine the factors that influence Indonesian rubber export supply based on the export destination countries. Indonesian rubber export supply is thought to be influenced by the variables like the volume of Indonesia rubber exports, the price of Indonesian natural rubber, the volume of domestic rubber production, the export volume of the previous period, the rupiah exchange rate against US$, the interest rate and real Gross Domestic Product (GDP). The data used is the annual time series from 1995-2015 based on export countries encompassing the United States, China, and Japan. Multiple linear regression with the Ordinary Least Square (OLS) method is applied to analyse the data. The results showed that the volume of Indonesian rubber exports to China is not influenced by domestic natural rubber prices and the Rupiah exchange rate against the Chinese Yuan. The volume of Indonesian rubber exports to Japan is influenced by the volume of domestic rubber production. The volume of Indonesian rubber exports to the three destination countries is influenced by the volume of domestic rubber production, interest rate, and real GDP.

Bayesian quantile regression analysis of private education expenses for high scool students in Korea (일반계 고등학생 사교육비 지출에 대한 베이지안 분위회귀모형 분석)

  • Oh, Hyun Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1457-1469
    • /
    • 2017
  • Private education expenses is one of the key issues in Korea and there have been many discussions about it. Academically, most of previous researches for private education expenses have used multiple regression linear model based on ordinary least squares (OLS) method. However, if the data do not satisfy the basic assumptions of the OLS method such as the normality and homoscedasticity, there is a problem with the reliability of estimations of parameters. In this case, quantile regression model is preferred to OLS model since it does not depend on the assumptions of nonnormality and heteroscedasticity for the data. In the present study, the data from a survey on private education expenses, conducted by Statistics Korea in 2015 has been analyzed for investigation of the impacting factors for private education expenses. Since the data do not satisfy the OLS assumptions, quantile regression model has been employed in Bayesian approach by using gibbs sampling method. The analysis results show that the gender of the student, parent's age, and the time and cost of participating after school are not significant. Household income is positively significant in proportion to the same size for all levels (quantiles) of private education expenses. Spending on private education in Seoul is higher than other regions and the regional difference grows as private education expenditure increases. Total time for private education and student's achievement have positive effect on the lower quantiles than the higher quantiles. Education level of father is positively significant for midium-high quantiles only, but education level of mother is for all but low quantiles. Participating after school is positively significant for the lower quantiles but EBS textbook cost is positively significant for the higher quantiles.