• Title/Summary/Keyword: OLED devices

Search Result 338, Processing Time 0.029 seconds

What Is the Key Vacuum Technology for OLED Manufacturing Process?

  • Baek, Chung-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.95-95
    • /
    • 2014
  • An OLED(Organic Light-Emitting Diode) device based on the emissive electroluminescent layer a film of organic materials. OLED is used for many electronic devices such as TV, mobile phones, handheld games consoles. ULVAC's mass production systems are indispensable to the manufacturing of OLED device. ULVAC is a manufacturer and worldwide supplier of equipment and vacuum systems for the OLED, LCD, Semiconductor, Electronics, Optical device and related high technology industries. The SMD Series are single-substrate sputtering systems for deposition of films such as metal films and TCO (Transparent Conductive Oxide) films. ULVAC has delivered a large number of these systems not only Organic Evaporating systems but also LTPS CVD systems. The most important technology of thin-film encapsulation (TFE) is preventing moisture($H_2O$) and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass substrate, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This report provides a review of promising thin-film barrier technologies as well as the WVTR(Water Vapor Transmission Rate) properties. Multilayer thin-film deposition technology of organic and inorganic layer is very effective method for increasing barrier performance of OLED device. Gases and water in the organic evaporating system is having a strong influence as impurities to OLED device. CRYO pump is one of the very useful vacuum components to reduce above impurities. There for CRYO pump is faster than conventional TMP exhaust velocity of gases and water. So, we suggest new method to make a good vacuum condition which is CRYO Trap addition on OLED evaporator. Alignment accuracy is one of the key technologies to perform high resolution OLED device. In order to reduce vibration characteristic of CRYO pump, ULVAC has developed low vibration CRYO pumps to achieve high resolution alignment performance between Metal mask and substrate. This report also includes ULVAC's approach for these issues.

  • PDF

Characterization of High Efficient Red Phosphorescent OLEDs Fabricated on Flexible Substrates (연성기판위에 제작된 고효율 Red 인광 OLED의 특성평가)

  • Kim Sung Hyun;Lee Yoo Jin;Byun Ki Nam;Jung Sang Yun;Lee Bum Sung;Yoo Han Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.15-19
    • /
    • 2005
  • The organic light-emitting devices(OLEDs) based on fluorescence have low efficiency due to the requirement of spin-symmetry conservation. By using the phosphorescent material, the internal quantum efficiency can reach 100$\%$, compared to 25$\%$ in case of the fluorescent material [1]. Thus recently phosphorescent OLEDs have been extensively studied and showed higher internal quantum efficiency than conventional OLEDs. In this study, we have applied a new Ir complex as a red dopant and fabricated a red phosphorescent OLED on a flexible PC(Polycarbonate) substrate. Also, we have investigated the electrical and optical properties of the devices with a structure of A1/LiF/Alq3/(RD05 doped)BAlq/NPB/2-TNAIA/ITO/PC substrate. Our device showed the lightening efficiency of > 30 cd/A at an initial brightness of 1000 cd/$m^{2}$. The CIE(Commission Internationale de L'Eclairage) coordinates for the device were (0.62,0.37) at a current density of 1 mA/$cm^{2}$. In addition, although the sheet resistance of ITO films on PC substrate is higher than that on glass substrate, the flexible OLED showed much better lightening efficiency without much increase in operating voltage.

  • PDF

A Study on the Bottom-Emitting Characteristics of Blue OLED with 7-Layer Laminated Structure (7층 적층구조 배면발광 청색 OLED의 발광 특성 연구)

  • Gyu Cheol Choi;Duck-Youl Kim;SangMok Chang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.244-248
    • /
    • 2023
  • Recently, displays play an important role in quickly delivering a lot of information. Research is underway to reproduce various colors close to natural colors. In particular, research is being conducted on the light emitting structure of displays as a method of expressing accurate and rich colors. Due to the advancement of technology and the miniaturization of devices, the need for small but high visibility displays with high efficiency in energy consumption continues to increase. Efforts are being made in various ways to improve OLED efficiency, such as improving carrier injection, structuring devices that can efficiently recombine electrons and holes in a numerical balance, and developing materials with high luminous efficiency. In this study, the electrical and optical properties of the seven-layer stacked structure rear-light emitting blue OLED device were analyzed. 4,4'-Bis(carazol-9-yl)biphenyl:Ir(difppy)2(pic), a blue light emitting material that is easy to manufacture and can be highly efficient and brightened, was used. OLED device manufacturing was performed via the in-situ method in a high vacuum state of 5×10-8 Torr or less using a Sunicel Plus 200 system. The experiment was conducted with a seven-layer structure in which an electron or hole blocking layer (EBL or HBL) was added to a five-layer structure in which an electron or hole injection layer (EIL or HIL) or an electron or hole transport layer (ETL or HTL) was added. Analysis of the electrical and optical properties showed that the device that prevented color diffusion by inserting an EBL layer and a HBL layer showed excellent color purity. The results of this study are expected to greatly contribute to the R&D foundation and practical use of blue OLED display devices.

Performance and Applications of High Efficiency Phosphorescent OLED Technology

  • Hack, M.;Lu, M.K.;Kwong, R.;Weaver, M.S.;Tung, Y.J.;Chwang, A.;Brown, J.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.169-173
    • /
    • 2003
  • Universal Display Corporation (UDC), together with its University partners at Princeton University and the University of Southern California, are developing high-efficiency electrophosphorescent OLED devices, based on triplet emission. Recent results show both excellent device efficiencies and good lifetimes for the commercialization of low power consumption, full-color, passive and activematrix OLED displays. We also show that phosphorescent devices may be driven by low cost amorphous silicon backplanes, and discuss the benefits of using our proprietary top emission OLED device architecture.

  • PDF

Cyclic Measurement System for Evaluating Organic Light Emitting Diode Devices (유기 발광 다이오드 소자의 성능·수명 평가를 위한 순환 계측 시스템)

  • Park, Il-Hoo;Na, In-Yeob;Joo, Hyeonpil;Kim, Gyu-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.50-53
    • /
    • 2018
  • Cyclic measurement system using relay circuit for organic light emitting diode (OLED) was demonstrated. The OLED characterization such as current-voltage, impedance, and capacitance-voltage is performed in sequence, repetitively and automatically under full control of the personnel computer (PC) without changing the connection of cables. Owing to in situ degradation by cyclic measurement, the time dependence of the data can give good information on the reliability factor of the OLED devices. Therefore, both performance and reliability of the OLEDs can be evaluated, with no manual operation during the entire process.

Electro-optical Characterization of OLED Device

  • Lee Soon-Seok;Kim Ki-Seok;Lim Sung-Kyoo
    • International Journal of Contents
    • /
    • v.2 no.3
    • /
    • pp.6-10
    • /
    • 2006
  • Small molecule OLED devices were fabricated and the electro-optical characteristics were analyzed. The luminance and color coordinate of the fabricated OLED device were $24,390cd/m^2$ and (x=0.15, y=0.22), respectively. Current efficiency of 6.8 cd/A and power efficiency of 2.4 lm/W were also obtained under DC operating condition. Transient light intensity was also measured by using Si photodiode.

  • PDF

Emission Characteristics of Blue Fluorescence Tandem OLED Using MoOx (MoOx를 사용한 청색 형광 Tandem OLED의 발광 특성)

  • Kwak, Tea-Ho;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.104-108
    • /
    • 2014
  • To improve emission efficiency of organic light emitting devices (OLEDs), we fabricated the tandem OLED of ITO / 2-TNATA / NPB / SH-1: 3 vol.% BD-2 / Bphen / Liq / Al / $MoO_x$ (X nm) / 2-TNATA / NPB / SH-1: 3 vol.% BD-2 / Bphen / Liq / Al structure. And emission properties of single OLED and tandem OLED with $MoO_x$ thickness as charge generation layer (CGL) were measured. The current emission efficiency and quantum efficiency of tandem OLED with $MoO_x$ of 3 nm thickness were improved compare with single OLED from 7.46 cd/A and 5.39% to 22.57 cd/A and 11.76%, respectively. In case of thicker or thinner than $MoO_x$ of 3~5 nm, the current emission efficiency and quantum efficiency were decreased, because balance of electron and hole in emission layer was not matching. The driving voltage was increased from 8 V of single OLED to 15 V of tandem OLED by thickness increase of OLED. As a result, it was possible to improve the emission efficiency of OLEDs by optimized $MoO_x$ thickness.

Improvement of Extraction Efficiency of OLED by Nanosphere Lithography (나노스피어 리소그라피를 이용한 OLED 광추출 효율의 향상)

  • Han, Gwang-Min;Yeo, Jong-Bin;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.1002-1009
    • /
    • 2011
  • The light extraction efficiency of top-emitting organic light-emitting diode (OLED) was improved by insertion of corrugation patterns between indium tin oxide and organic layers. The corrugation patterns was fabricated by nanosphere lithography, which could form a self-assembled particle monolayer over a large area. The electrical and optical properties for the OLED devices fabricated by vacuum evaporation, were investigated. We have demonstrated the enhancement of the power efficiency of corrugated OLED. As a result, the power efficiency of the corrugated OLED was found to be more than 42%.

Improved Performance of Organic Light-Emitting Diodes Using Novel Hole-transporting Materials

  • Kim, Young-Kook;Hwang, Seok-Hwan;Kwak, Yoon-Hyun;Lee, Chang-Ho;Yi, Jeoung-In;Lee, Jong-Hyuk;Kim, Sung-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.758-761
    • /
    • 2009
  • The electroluminescent devices with the phenylnaphthyldiamine HTMs as the hole-transporting layer were more efficient than that with the biphenyldiamine HTM 1. Particularly, the life-time of the device IV using HTM 2 is about two times longer than that of the reference device III with HTM 1 within the measured current density, indicating more effective recombination at the emitting layer of device IV.

  • PDF

Effect of the structural and electrical characteristics of TCO thin films on the performance of OLED devices (TCO 박막의 구조 및 전기적 특성에 따른 OLED 소자의 특성)

  • Lee, Bong-Kun;Lee, Yu-Lim;Lee, Kyu-Mann
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.270-270
    • /
    • 2010
  • OLED device is one of the most attractive and alternative display components, which stems primarily from the self-emission, large intrinsic viewing angle, and fast switching speed. However, because of its relatively short history of development, much remains to be studied in terms of its basic device physics, manufacturing processes, and reliability etc. Especially among several issues, it should be noted that the device characteristics are very sensitive to the surface properties of transparent conducting oxide (TCO) electrode materials. In this study, we have investigated the performance of OLED devices as a function of sheet resistance and surface roughness of TCO thin films. For this purpose, ITO and IZO thin films were deposited by r. f. magnetron sputtering under various ambient gases (Ar, Ar+O2 and Ar+H2, respectively). The crystal structure and surface morphology were examined by using XRD and FESEM. Also, electrical and optical properties were Investigated.

  • PDF