• Title/Summary/Keyword: OLED devices

Search Result 338, Processing Time 0.025 seconds

Electrical and Optical Study of PLED & OLEDS Structures

  • Mohammed, BOUANATI Sidi;SARI, N. E. CHABANE;Selma, MOSTEFA KARA
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권3호
    • /
    • pp.124-129
    • /
    • 2015
  • Organic electronics are the domain in which the components and circuits are made of organic materials. This new electronics help to realize electronic and optoelectronic devices on flexible substrates. In recent years, organic materials have replaced conventional semiconductors in many electronic components such as, organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic (OPVs). It is well known that organic light emitting diodes (OLEDs) have many advantages in comparison with inorganic light-emitting diodes LEDs. These advantages include the low price of manufacturing, large area of electroluminescent display, uniform emission and lower the requirement for power. The aim of this paper is to model polymer LEDs and OLEDs made with small molecules for studying the electrical and optical characteristics. The purpose of this modeling process is, to obtain information about the running of OLEDs, as well as, the injection and charge transport mechanisms. The first simulation structure used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2'-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode with a high work function, usually an indium tin oxide (ITO) substrate, and a cathode with a relatively low work function, such as Al. Electrons will then be injected from the cathode and recombine with electron holes injected from the anode, emitting light. In the second structure, we replaced MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). This simulation uses, the Poole-Frenkel -like mobility model and the Langevin bimolecular recombination model as the transport and recombination mechanism. These models are enabled in ATLAS- SILVACO. To optimize OLED performance, we propose to change some parameters in this device, such as doping concentration, thickness and electrode materials.

증착 온도 및 수소 유량에 따른 IZO 박막의 구조적 및 전기적 특성 (Structural and Electrical Characteristics of IZO Thin Films Deposited at Different Substrate Temperature and Hydrogen Flow Rate)

  • 한성호;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제12권2호
    • /
    • pp.33-37
    • /
    • 2013
  • In this study, we have investigated the effect of the substrate temperature and hydrogen flow rate on the characteristics of IZO thin films for the organic light emitting diodes (OLED) devices. For this purpose, IZO thin films were deposited by RF magnetron sputtering at room temperature and $300^{\circ}C$ with various $H_2$ flow rate. In order to investigate the influences of the oxygen, the flow rate of hydrogen in argon mixing gas has been changed from 0.1sccm to 0.9sccm. IZO thin films deposited at room temperature show amorphous structure, whereas IZO thin films deposited at $300^{\circ}C$ show crystalline structure having an (222) preferential orientation regardless of $H_2$ flow rate. The electrical resistivity of IZO film decreased with increasing flow rate of $H_2$ under Ar+$H_2$. The change of electrical resistivity with increasing flow rate of $H_2$ was mainly interpreted in terms of the charge carrier concentration rather than the charge carrier mobility. The electrical resistivity of the amorphous-IZO films deposited at R.T. was lower than that of the crystalline-IZO thin films deposited at $300^{\circ}C$. The increase of electrical resistivity with increasing substrate temperature was interpreted in terms of the decrease of the charge carrier mobility and the charge carrier concentration. All the films showed the average transmittance over 83% in the visible range.

발광 재료용 다이포스핀-다이골드 착물의 합성과 특성 연구 (Synthesis and Characteristics of Diphosphine-digold complexes as Light-Emitting Materials)

  • 김준호;손병청;하윤경
    • 한국응용과학기술학회지
    • /
    • 제19권2호
    • /
    • pp.103-107
    • /
    • 2002
  • Diphosphine dinuclear gold(I) complexes were synthesized from the reaction of bridged diphosphines and gold ions. As a bridged diphosphine, 1,2-bis(diphenylphosphino)metbane (dppm) or 1,1'-Bis(diphenylphosphino) ferrocene (dppf) was introduced. As anionic ligands, CI was first coordinated to Au, resulting in (diphosphine)$(AuCl)_{2}$. Then, the ligand, SPh, was substituted for Cl in the chloride complex to give (diphosphine)$(AuSPh)_{2}$. As a result, three digold complexes, (dppm)$(AuCl)_{2}$. (I), (dppf)$(AuCl)_{2}$. (II), and (dppf)$(AuSPh_{2}$. (III) were prepared in this study. The thermal properties were investigated at first hand to confirm that the gold complexes were in fact formed. The digold complexes were decomposed above $200^{\circ}C$ while the ligand, dppm or dppf, melts under $180^{\circ}C$ The photoluminescence (PL) spectra of the spin-coated thin films showed the maximum peak at 590, 595, and 540nm for the complex, I, II, and III, respectively. These complexes were found to give the orange color phosphorescence. Therefore, these digold complexes can be candidates for orange-red phosphorescent materials in organic electroluminescent devices (OELD). Further studies on application of the complexes as a dopant in an emitting layer are in progress in our laboratory.

유기발광소자에 적용 가능한 NiOx 기반의 정공주입층 연구 (NiOx-based hole injection layer for organic light-emitting diodes)

  • 김준모;김예진;이원호;이동구
    • 센서학회지
    • /
    • 제30권5호
    • /
    • pp.309-313
    • /
    • 2021
  • Organic semiconductors have received tremendous attention for their research because of their tunable electrical and optical properties that can be achieved by changing their molecular structure. However, organic materials are inherently unstable in the presence of oxygen and moisture. Therefore, it is necessary to develop moisture and air stable semiconducting materials that can replace conventional organic semiconductors. In this study, we developed a NiOx thin film through a solution process. The electrical characteristics of the NiOx thin film, depending on the thermal annealing temperature and UV-ozone treatment, were determined by applying them to the hole injection layer of an organic light-emitting diode. A high annealing temperature of 500 ℃ and UV-ozone treatment enhanced the conductivity of the NiOx thin films. The optimized NiOx exhibited beneficial hole injection properties comparable those of 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN), a conventional organic hole injection layer. As a result, both devices exhibited similar power efficiencies and the comparable electroluminescent spectra. We believe that NiOx could be a potential solution which can provide robustness to conventional organic semiconductors.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

단일 호스트와 3색 도펀트를 이용한 고휘도 백색 유기발광다이오드 제작과 특성 평가 (Fabrication and Characterization of High Luminance WOLED Using Single Host and Three Color Dopants)

  • 김민영;이준호;장지근
    • 한국재료학회지
    • /
    • 제26권3호
    • /
    • pp.117-122
    • /
    • 2016
  • White organic light-emitting diodes with a structure of indium-tin-oxide [ITO]/N,N-diphenyl-N,N-bis-[4-(phenylm-tolvlamino)-phenyl]-biphenyl-4,4-diamine [DNTPD]/[2,3-f:2, 2-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile [HATCN]/1,1-bis(di-4-poly-aminophenyl) cyclo -hexane [TAPC]/emission layers doped with three color dopants/4,7-diphenyl-1,10-phenanthroline [Bphen]/$Cs_2CO_3$/Al were fabricated and evaluated. In the emission layer [EML], N,N-dicarbazolyl-3,5-benzene [mCP] was used as a single host and bis(2-phenyl quinolinato)-acetylacetonate iridium(III) [Ir(pq)2acac]/fac-tris(2-phenylpyridinato) iridium(III) $[Ir(ppy)_3]$/iridium(III) bis[(4,6-di-fluoropheny)-pyridinato-N,C2] picolinate [FIrpic] were used as red/green/blue dopants, respectively. The fabricated devices were divided into five types (D1, D2, D3, D4, D5) according to the structure of the emission layer. The electroluminescence spectra showed three peak emissions at the wavelengths of blue (472~473 nm), green (495~500 nm), and red (589~595 nm). Among the fabricated devices, the device of D1 doped in a mixed fashion with a single emission layer showed the highest values of luminance and quantum efficiency at the given voltage. However, the emission color of D1 was not pure white but orange, with Commission Internationale de L'Eclairage [CIE] coordinates of (x = 0.41~0.45, y = 0.41) depending on the applied voltages. On the other hand, device D5, with a double emission layer of $mCP:[Ir(pq)_2acac(3%)+Ir(ppy)_3(0.5%)]$/mCP:[FIrpic(10%)], showed a nearly pure white color with CIE coordinates of (x = 0.34~0.35, y = 0.35~0.37) under applied voltage in the range of 6~10 V. The luminance and quantum efficiency of D5 were $17,160cd/m^2$ and 3.8% at 10 V, respectively.

휴대폰의 광원을 이용한 디지털 카드 시스템 (Mobile phone payment system using a light signal)

  • 허문행;신문선;류근호
    • 한국산학기술학회논문지
    • /
    • 제10권6호
    • /
    • pp.1237-1244
    • /
    • 2009
  • 본 논문에서는 모든 휴대폰이 가지고 있는 액정의 광원을 활용하여 데이터 전송및 비용처리를 할 수 있는 디지털 카드시스템을 제안한다. 즉, 휴대폰의 내장된 VM(Vurtual Machine)OS에 소프트웨어방식으로 카드번호와 같은 데이터를 내장한 버츄얼 모바일 카드를 생성하여 휴대폰에 탑재하고, 탑재된 모바일 카드에 휴대폰에 장착된 발광장치(LCD 백라이트 혹은 유기 EL)를 모바일 카드의 제어모듈이 모바일 카드의 내장 데이터를 펄스 선호로 발광하게 함으로써, 카드번호와 같은 데이터를 전용리더기로 수신토록 하는 모바일 디지털 카드 시스템이다. 제안하는 기술은 휴대폰의 광원을 컨트롤 하는 방법을 사용하여 전용 휴대폰의 필요 없이 보급된 대부분의 휴대폰에 적용 가능하며, 소프트웨어로 구현되어 다양한 기능을 추가하는 것이 가능하다. 그러나 휴대폰을 이용한 디지카드시스템은 휴대폰의 성능에 따라 데이터의 전송시간에 차이가 나고, 암호화 등의 이유로 데이터를 길게 하면 데이터의 길이에 비례하여 전송속도가 늘어나는 단점이 있다. 본 논문에서 제안한 디지카드 시스템은 이러한 문제점들을 해결하기 위하여 유기 EL(OLED)을 이용하여 속도를 획기적으로 향상시켰으며 또한 소프트웨어적으로 암호화를 해결하여 보안상의 문제 등을 해결하였다.

봉지막이 박형 실리콘 칩의 파괴에 미치는 영향에 대한 수치해석 연구 (Effects of Encapsulation Layer on Center Crack and Fracture of Thin Silicon Chip using Numerical Analysis)

  • 좌성훈;장영문;이행수
    • 마이크로전자및패키징학회지
    • /
    • 제25권1호
    • /
    • pp.1-10
    • /
    • 2018
  • 최근 플렉서블 OLED, 플렉서블 반도체, 플렉서블 태양전지와 같은 유연전자소자의 개발이 각광을 받고 있다. 유연소자에 밀봉 혹은 봉지(encapsulation) 기술이 매우 필요하며, 봉지 기술은 유연소자의 응력을 완화시키거나, 산소나 습기에 노출되는 것을 방지하기 위해 적용된다. 본 연구는 봉지막(encapsulation layer)이 반도체 칩의 내구성에 미치는 영향을 고찰하였다. 특히 다층 구조 패키지의 칩의 파괴성능에 미치는 영향을 칩의 center crack에 대한 파괴해석을 통하여 살펴보았다. 다층구조 패키지는 폭이 넓어 칩 위로만 봉지막이 덮고있는 "wide chip"과 칩의 폭이 좁아 봉지막이 칩과 기판을 모두 감싸고 있는 "narrow chip"의 모델로 구분하였다. Wide chip모델의 경우 작용하는 하중조건에 상관없이 봉지막의 두께가 두꺼울수록, 강성이 커질수록 칩의 파괴성능은 향상된다. 그러나 narrow chip모델에 인장이 작용할 때 봉지막의 두께가 두껍고 강성이 커질수록 파괴성능은 악화되는데 이는 외부하중이 바로 칩에 작용하지 않고 봉지막을 통하여 전달되기에 봉지막이 강하면 강한 외력이 칩내의 균열에 작용하기 때문이다. Narrow chip모델에 굽힘이 작용할 경우는 봉지막의 강성과 두께에 따라 균열에 미치는 영향이 달라지는데 봉지막의 두께가 작을 때는 봉지막이 없을 때보다 파괴성능이 나쁘지만 강성과 두께의 증가하면neutral axis가 점점 상승하여 균열이 있는 칩이 neutral axis에 가까워지게 되므로 균열에 작용하는 하중의 크기가 급격히 줄어들게 되어 파괴성능은 향상된다. 본 연구는 봉지막이 있는 다층 패키지 구조에 다양한 형태의 하중이 작용할 때 패키지의 파괴성능을 향상시키기 위한 봉지막의 설계가이드로 활용될 수 있다.