• Title/Summary/Keyword: OLED Manufacturing

Search Result 97, Processing Time 0.024 seconds

Transparent Electrode Forming Technology using ESD Coating Methode (ESD 기법을 이용한 투명전도막 형성 기술)

  • Kim, Jung-Su;Kim, Dong-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.348-348
    • /
    • 2009
  • The conductive coating method is used for various industrial fields. For example, Sputtering process is used to coat ITO layer in LCD or OLED panel manufacture process and fabricate a base layer of substrate of an electric printing device. However, conventional coating processes (beam sputtering, spin coating etc.) has a problems in the industrial manufacturing process. These processes have a very high cost and critical manufacturing environment as a vacuum process. Recently, many researchers have proposed various printing process instead of conventional coating processes. In this paper, we propose an ESD printing process in ITO coating layer and apply to fabricate a conductive coating film. Furthermore, the effect of the nozzle and also the applied voltage on different configuration of the nozzle head was also studied for better understanding of the Electro Static deposition process.

  • PDF

A Study on the Properties of Anodic Oxide Films Formed on Al Alloys in Oxalic Acid (알루미늄 합금 소재의 옥살산 아노다이징 피막 물성 연구)

  • Jeong, Nagyeom;Park, Jihyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.5
    • /
    • pp.249-256
    • /
    • 2020
  • As the size of manufacturing equipment for LCD and OLED displays increases, replacement of existing heavy stainless steel components with light metals, such as aluminum alloys, is being more important in semiconducting and display manufacturing industries. To use aluminum alloys for components in semiconducting and display industries, it is important to develop a new anodization method for improved performance of anodic oxide films than conventional anodization method based on sulfuric acid. In this work, optimum applied current density and the best sealing methods for anodic oxide films in 3% oxalic acid were explored. Experimental results showed 2.5 A/dm2 is the best applied current density for improved hardness and dielectric breakdown voltage. Sealing of the anodic oxide films further improved their hardness, dielectric breakdown voltage and resistance to HCl, by which application of anodic oxide films become applicable for components in semiconducting and display industries.

Electrical Characteristics on the Variation of Thickness and Deposition Rate in Organic Layer of OLEDs (유기발광 소자에서 유기층의 두께 및 증착속도 변화에 따른 전기적 특성)

  • Lee, Young-Hwan;Kim, Weon-Jong;Yang, Jae-Hoon;Shin, Jong-Yeol;Kim, Tae-Wan;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.362-366
    • /
    • 2006
  • OLEDs(Organic Light Emitting Diodes) are attractive as alternative display components because of their relative merits of being self-emitting, having large intrinsic viewing angle and fast switching speed. But because of their relatively short history of development, much remains to be studied in terms of their basic device physics and design, manufacturing techniques, stability and so on. We investigated electrical properties of N, N-diphenyl-N, N bis (3-methyphenyl-l,1'-biphenyl-4,4'-diamine (TPD) and tris-8-hydroxyquinoline aluminum$(Alq_3)$ when their thicknesses were changed variedly from 3:7 to 5:5 of their thickness ratios. And we also studied properties of OLED depend on their deposition rate between $0.05{\sim}0.2$ nm/s.

Novel Driving Scheme to remove residual image sticking in AMOLED

  • Parikh, Kunjal;Choi, Joon-Hoo;Cho, Kyu-Sik;Huh, Jong-Moo;Park, Kyong-Tae;Jeong, Byoung-Seong;Park, Yong-Hwan;Kim, Tae-Youn;Lee, Baek-Woon;Kim, Chi-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.553-556
    • /
    • 2008
  • We hereby report novel driving scheme to eliminate effect of "residual" image sticking (RRI) problem which arises due to hysteresis problem in Thin Film Transistor (TFT) in AMOLED Displays. The driving scheme applies "black" voltage after every data voltage period in order to drive AMOLED in uni-direction. The system can be easily implemented with 120 Hz driving scheme which is well matured in AMLCD industries. Our analyses show systematic evaluation of the problem and thereby solving it by simple methods which will be significantly effective of driving OLED towards mass manufacturing stage.

  • PDF

A Comparative Study on the Electrostatic Eliminator of Piezo Type Ionizer and Pulse AC Corona Type Ionizer (피에조를 이용한 코로나 방전과 펄스교류 코로나 방전을 이용한 정전기 제거장치의 비교 연구)

  • Kwon, Sung-Yul;Lee, Dong-Hoon;Choi, Jae-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.50-54
    • /
    • 2009
  • Ionizer is used for improving manufacturing process and reducing inferior goods in the clean room. As a general rule, neutralization of the electrostatic charge is most important to make TFT-LCD, PDP and OLED. Pulse AC-static eliminator with output voltage of about 10.5kV has been used these days as neutralization device. But this device has a problem with lower performance which was caused by particles-adhesion on the electrode when it has been used for a long time. So we studied to solve the problem with lower performance using high Frequency(72kHz) static eliminator which was produced by Piezo transformer device, and compared Pulse-AC type with Piezo-electronic device such as decay time and ion balance for 10 weeks periods. As a result of this study, we found that Piezo transformer device has been maintained normal condition for 10 weeks. Also, we made the rule by this study, normally Piezo transformer device has to clean the electrode during every 11th weeks.

A Method for Improving Resolution and Critical Dimension Measurement of an Organic Layer Using Deep Learning Superresolution

  • Kim, Sangyun;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.153-164
    • /
    • 2018
  • In semiconductor manufacturing, critical dimensions indicate the features of patterns formed by the semiconductor process. The purpose of measuring critical dimensions is to confirm whether patterns are made as intended. The deposition process for an organic light emitting diode (OLED) forms a luminous organic layer on the thin-film transistor electrode. The position of this organic layer greatly affects the luminescent performance of an OLED. Thus, a system for measuring the position of the organic layer from outside of the vacuum chamber in real-time is desired for monitoring the deposition process. Typically, imaging from large stand-off distances results in low spatial resolution because of diffraction blur, and it is difficult to attain an adequate industrial-level measurement. The proposed method offers a new superresolution single-image using a conversion formula between two different optical systems obtained by a deep learning technique. This formula converts an image measured at long distance and with low-resolution optics into one image as if it were measured with high-resolution optics. The performance of this method is evaluated with various samples in terms of spatial resolution and measurement performance.

Research on BTU and Short-axis Geometry of Line-beam Optics for LLO Applications (레이저 박리용 선형 빔 광학계의 빔 변환 모듈과 단축 형상에 대한 연구)

  • Lee, Seungmin;Lee, Gwangjin;Kim, Daeyong;Lee, Sanghyun;Jung, Jinho
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.276-285
    • /
    • 2021
  • This paper reports the study of the line-beam optical system of the laser lift-off (LLO) equipment used in the OLED manufacturing process. To obtain both a long process depth and a narrow width of the line beam, even with the poor M2 value of the laser source, the research is focused on the optical system, including the beam transformation unit (BTU). We also propose optical configurations for the super-Gaussian distribution and the fiber-based BTU for the flat-top distribution.

Effect of the Cylindrical Fly-eye Lens's Precision on Long-axis Uniformity and Steepness of a Line Beam (실린더 잠자리 눈 렌즈의 정밀도가 선형 빔의 장축 균일도 및 경사도에 미치는 영향)

  • Lee, Seungmin;Song, Hyunsu;Woo, Hee;Kim, Daeyong;Jung, Jinho
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.296-305
    • /
    • 2021
  • This paper reports a study on the long axis performance of the line beam optics used in laser lift-off equipment for the OLED manufacturing process. The centration errors of the cylindrical lens are classified and defined in seven categories, and the measurement methods are presented. The cylindrical fly-eye lens is analyzed theoretically and experimentally to find the influence of the surface shape error and decentering error on the long axis performance of the line beam optics system. A future research direction is also presented to improve the long axis performance.

Market Trends of Flexible Electronic Circuits and Its Intensive Analysis of Substrate Structure (플렉시블 전자회로의 시장동향 및 기판구조에 대한 심층분석)

  • Young-Cho Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.105-112
    • /
    • 2023
  • We analyze the global market for flexible electronic circuits, technical considerations, and analyze the market for application areas and regions. In the market analysis of the application field, the display field has the greatest influence in terms of market size and annual growth rate, and the OLE D lighting market size is expected to grow by nearly 50% in 2026. The multilayer flexible electronics, which dependently requires the semiconductor technology, has a larger market size than other structures and its growth rate is relatively large, leading the market and will be further analyzed in depth. The market size of multilayer flexible electronics applied to display field is expected to show an annual growth rate of 21.1% from $2.7 billion in 2017 to $9.8 billion in 2026, and the OLED market is expected to grow by 75.2% during the same periods. Recently, as electronic products have been miniaturized and advanced, and robust installation in a small space is required, companies that preoccupy multilayer structure or rigid flexible electronic circuit technology have an advantage in competitiveness, so many companies are trying to obtain this technology. These efforts are systematically supported by many countries because they can achieve mutual growth by strengthening the competitiveness of the application field and the same industry. In the case of Korea, a support system is established, but it is required to expand and activate it, and to localize manufacturing equipment and materials.

Development of Roll Printing Process System for The Next Generation Flexible Solar Cell (차세대 플렉서블 태양전지 생산용 롤프린팅 공정장비 기술 개발)

  • Kim, Dong-Soo;Kim, Jung-Su;Kim, Myoung-Sub;Kim, Kang-Dae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.57-60
    • /
    • 2009
  • The conductive coating method was used for a various industrial fields. For example, Sputtering process is using to a coat of ITO layer in LCD or OLED panel manufacture process and fabricate a base layer of substrate of an electric printing device. However, conventional coating process (beam sputtering, spin coating etc.) has a problems in the industrial manufacturing process. These processes have a very high cost and critical manufacturing environment as a vacuum process. Recently, many researchers were proposed a various printing process instead of conventional coating process. In this paper, we propose an ESD printing process in ITO coating layer and apply to fabricate a conductive coating film. Ours transparent electrode had a surface resistance of about $66{\Omega}/{\square}$ and transparent of 74% in the wavelength of 500nm. This transparent electrode manufacturing process will be applied to Roll-to-Roll process. In addition, we developed roll printing process system for the next generation flexible solar cell.

  • PDF