• 제목/요약/키워드: OLED (organic light-emitting device)

검색결과 302건 처리시간 0.029초

청색 유기발광층 두께에 따른 2-파장 방식의 백색 유기발광 소자의 광학적 특성 (Dependence of Blue Organic Emitter Layer Thickness to Optical Property of 2-wavelength White Organic Light-emitting Diodes)

  • 박찬준;조남인;송영욱
    • 제어로봇시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.511-514
    • /
    • 2008
  • 2-wavelength type white OLED devices have been made consisted of two layers; a layer with blue light emitting DPVBi host and other EML layer with yellow emitting rubrene dopant. New method to get white emitting device has been suggested by varying thicknesses of the DPVBi layer. The ITO/2-TNATA($150{\AA}$)/NPB($350{\AA}$)/DPVBi($35{\AA}$)/DPVBi:rubrene (2wt%,$200{\AA}$)/DPVBi($100{\AA}$)/Alq_3($50{\AA}$)/LiF($5{\AA}$)/Al($1000{\AA}$) structure has showed optimum results in CIE coordinates of (0.3233, 0.33). OLED devices with this structure has properties of $1.2d/m^2$ at turn-on voltage of 3.9V and $1037cd/m^2$ at 7.9V. This structure has advantages of simple fabrication and easy to emit the white color.

OLED 조명을 위한 Yellow, Orange, Red 인광 재료 (Yellow, Orange, and Red Phosphorescent Materials for OLED Lightings)

  • 정효철;박영일;김범진;박종욱
    • 공업화학
    • /
    • 제26권3호
    • /
    • pp.247-250
    • /
    • 2015
  • 유기 발광 다이오드(OLED)는 학문 및 산업 분야에서 많은 관심을 받아왔다. OLED는 기존에 사용되고 있는 광원들과는 달리 면 발광, 친환경적인 에너지 사용, 대면적, 초경량, 그리고 초박형 등의 차별화된 특징을 가지고 있기 때문에 최근 조명 시장에서 많은 관심을 받고 있다. 게다가, OLED 조명은 LED 형광등을 대체할 수 있는 차세대 조명으로써 주목되고 있다. 본 논문에서는 white OLED (WOLED)에 적용되고 있는 대표적인 인광 발광 재료들을 소개하며, 특히 yellow, orange, red 인광 물질들의 화학구조와 소자효율을 정리하였다. 이러한 선행연구의 물질들을 이해하고 인광 물질들을 체계적으로 분류함으로써 새로운 발광 재료를 연구하고 개발함에 있어서 많은 도움이 되리라고 생각한다.

NiO/AZO anode를 적용한 OLED의 정공주입 향상에 관한 연구 (A study on the enhancement of hole injection in OLED using NiO/AZO Anode)

  • 진은미;송민종;김진사;박춘배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.444-445
    • /
    • 2007
  • Aluminum-doped zinc oxide (AZO) films are attractive materials as transparent conductive electrode because they are inexpensive, nontoxic and abundant element compared with indium tin oxide (ITO). AZO films have been deposited on glass (coming 1737) substrates by RF magnetron sputtering system. An ultrathin layer of nickel oxide (NiO) was deposited on the AZO anode to enhance the hole injections in organic light-emitting diodes (OLED). The current density-voltage and luminescence-voltage properties of devices were studied and compared with ITO device.

  • PDF

자체 개발한 유기 발광 소자의 효율 측정 시스템 (Self-developed Efficiency Measurement System of Organic Light-Emitting Diodes)

  • 한원근
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.537-538
    • /
    • 2005
  • A way of measuring an efficiency of organic light-emitting diodes are studied. The efficiency is obtained from the current-voltage-luminance characteristics of the devices. Basically, number of charge carriers are obtained from the current-voltage characteristics, and the number of photons are obtained from the current of Si-photodetector. The organic light-emitting diodes are assumed as a lambertian light source and a program is made for calculating the efficiency. A device structure of ITO/TPD/$Alq_3$/Al is manufactured using thermal-vapor evaporation. This device is set into a measuring system and measured the efficiency. The efficiencies are measured using the lab-made program and commercially available equipments. The obtained values are similar to each other within 10% uncertainty.

  • PDF

BAlq를 적용한 유기발광소자의 제작 및 특성 분석에 관한 연구 (A Study on the Fabrication and Characteristic Analysis of Organic Light Emitting Device using BAlq)

  • 오환술;황수웅;강성종
    • 한국전기전자재료학회논문지
    • /
    • 제17권1호
    • /
    • pp.83-88
    • /
    • 2004
  • BAlq was fabricated as for hole blocking layer in the OLED devices to investigate its electrical and optical characteristics. Device structure was ITO/$\alpha$ -NPD/EML/BAlq/Alq3/Al:Li using TYG-201, DPVBi (4, 4 - Bis (2, 2 - diphenylethen-1 - yls) - Biphenyl), Alq and DCJTB (4-(dicyanomethylene)-2- (1-propyls)6-methy 4H-pyrans) as green emitting material, blue emitting material, host material for red emission and red emitting guest material respectively. The OLED device showed optimum working voltage and electron density at 600 cd/$m^2$ when thickness of BAlq is 25$\AA$ for RGB OLED devices while their efficiencies are better at 50$\AA$ of BAlq. Red and blue color OLEDs also fabricated using 30$\AA$ thickness of BAlq and compared with those without BAlq layer. BAlq was more effective in electrical properties such as working voltage, current density and efficiency of red OLED than blue and green ones. This study describes that 30$\AA$ is optimum thickness of BAlq for best performance of full color OLED devices when using BAlq as a hole blocking material.

Top Emission Organic Light Emitting Diode with Transparent Cathode, Ba-Ag Double Layer

  • Lee, Chan-Jae;Moon, Dae-Gyu;Han, Jeong-In
    • Journal of Information Display
    • /
    • 제7권3호
    • /
    • pp.23-26
    • /
    • 2006
  • We fabricated top emission organic light emitting diode (TEOLED) with transparent metal cathode Barium and Silver bilayer. Very thin Ba/Ag bilayer was deposited on the organic layer by thermal evaporation. This cathode showed high transmittance over 70% in visible range, and the device with a Ba-Ag has a low turn on voltage and good electrical properties.

다층구조 OLED소자의 발광특성 (Emission Characteristics of Multilayer Structure OLED)

  • 최영일;조수영
    • 전자공학회논문지 IE
    • /
    • 제48권4호
    • /
    • pp.25-29
    • /
    • 2011
  • 유기 EL소자는 제작이 쉽고 휘도가 높아 CRT와 LED 대신 평판 디스플레이 패널의 광원으로써 많이 연구되어 지고 있으며, OLED 소자중 청색 OLED는 풀컬러 적용 어플리케이션에 적용할 수 있기 때문에 이에 대한 연구가 이루어 지고 있다. 본 연구에서는, 발광 소재로 PBD, Alq3를 사용하여 유기 EL 디바이스의 전기 발광 특성을 측정하였으며, 전류와 휘도는 전압과의 관계에서 알 수 있었고 휘도와 전류의 관계를 제시하였다.

New ETL 층에 의한 저전압 구동 백색 발광 OLED (Low voltage driving white OLED with new electron transport layer)

  • 김태용;서원규;문대규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.100-101
    • /
    • 2008
  • We have developed low voltage driving white organic light emitting diode with new electron transport layer. The with light emission was realized with a yellow dopant, rubrene and blue-emitting DPVBi layer. The new electron transport layer results in very high current density at low voltage, causing a reduction of driving voltage. The device with new electron transport layer shows a brightness of 1000 cd/m2 at 4.3 V.

  • PDF

이온빔 플라즈마 처리된 플라스틱 기판에 의한 OLED의 광추출 효율 향상 (Improvement of Out-coupling Efficiency of Organic Light Emitting Device by Ion-beam Plasma-treated Plastic Substrate)

  • 김현우;송태민;이형준;전용민;권정현
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.7-10
    • /
    • 2022
  • A functional polyethylene terephthalate substrate to increase light extraction efficiency of organic light-emitting diodes is studied. We formed nano-structured PET surfaces by controlling the power, gas, and exposure time of the linear ion-beam. The haze of the polyethylene terephthalate can be controlled from 0.2% to 76.0% by changing the peak-to-valley roughness of nano structure by adjusting the exposure cycle. The treated polyethylene terephthalate shows average haze of 76.0%, average total transmittance of 86.6%. The functional PET increases the current efficiency of organic light-emitting diodes by 47% compared to that of organic light-emitting diode on bare polyethylene terephthalate. In addition to polyethylene terephthalate with light extraction performance, by conducting additional research on the development of functional PET with anti-reflection and barrier performance, it will be possible to develop flexible substrates suitable for organic light-emitting diodes lighting and transparent flexible displays.

Synthesis and Application of the Novel Azomethine Metal Complexes for the Organic Electroluminescent Devices

  • 김성민;김진순;신동명;김영관;하윤경
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권7호
    • /
    • pp.743-747
    • /
    • 2001
  • New azomethine metal complexes were synthesized systematically and characterized. Beryllium, magnesium, or zinc ions were used as a central metal cation and aromatic azomethines (L1-L4) were employed as a chelating anionic ligand. Emission peaks o f the complexes in both solution and solid states were observed mostly at the region of 400-500 nm in the luminescence spectra, where blue light was emitted. Three of them (BeL1 (Ⅰ), ZnL2 (Ⅱ), and ZnL3 (Ⅲ)) were sublimable and thus were applied to the organic light-emitting devices (OLED) as an emitting layer, respectively. The device including the emitting layer of Ⅰ exhibited white emission with the broad luminescence spectral range. The device with the emitting layer of Ⅱ showed blue luminescence with the maximum emission peak at 460 nm. Their ionization potentials, electron affinities, and electrochemical band gaps were investigated with cyclic voltammetry. The electrochemical gaps of 2.98 for I, 2.70 for Ⅱ, and 2.63 eV for Ⅲ were found to be consistent with their respective optical band gaps of 3.01, 2.95 and 2.61 eV within an experimental error. The structure of OLED manufactured in this study reveals that these complexes can work as electron transporting materials as well.