• Title/Summary/Keyword: OLED (organic light-emitting device)

Search Result 302, Processing Time 0.027 seconds

Polymeric hole-injection layer for high-efficiency and long-lifetime in organic light-emitting diodes

  • Choi, Mi-Ri;Han, Tae-Hee;Woo, Seong-Hoon;Lim, Kyung-Geun;Yun, Won-Min;Kwon, Oh-Kwan;Park, Chan-Eon;Shin, Hoon-Kyu;Hur, Dal-Ho;Shin, Kyoung-Hwan;Jang, Jyong-Sik;Lee, Tae-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.781-783
    • /
    • 2009
  • We achieved high efficiency and long lifetime in small-molecule organic light-emitting diodes using a blend of polyaniline-based conducting polymer and a perfluorinated ionomer as a hole injection layer (HIL). The HIL formed by single spin coating greatly enhanced the surface work function and thus the hole injection from the anode, which resulted in great improvement in device luminous efficiency. We find that the solution processed HIL outperforms the conventional vacuum-deposited small molecule HIL in terms of the device performance.

  • PDF

A Study on the Characteristic Analysis of ITO and the Fabrication of Organic Light Emitting Diodes by Variation of Plasma Condition (플라즈마 조건 변화에 따른 ITO 특성 분석 및 유기발광소자의 제작에 관한 연구)

  • Kim, Joong-Yeon;Kang, Seong-Jong;Cho, Jae-Young;Kim, Tae-gu;Oh, Hwan-Sool
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.941-944
    • /
    • 2005
  • In this experiment, OLEDs(Organic Light Emitting Diodes) was fabricated to confirm effect of Plasma treatment which increase the hole injection characteristic from anode. Device structure was $ITO/2-TNATA/{\alpha}-NPD/DPVBi/BAlq/Alq_3/Al:Li$. We used DPVBi (4, 4 - Bis (2,2-diphenylethen-1-yls) - Biphenyl) as a blue emitting material. To optimize the process condition of plasma treatment, we used 2 gases of the oxygen and nitrogen gas under 120 mTorr with 100 W, 200 W, and 400 W plasma power. The current efficiency of $N_2$ plasma is more efficient than that of $O_2$ plasma. At $1000 cd/m^2$, we obtained the maximum current efficiency of 6.45 cd/A using $N_2$ gas with 200 W plasma power.

Permeation Properties of Composite Thin Film for Organic Based Electronic Devices

  • Kim, Kwang-Ho;Kim, Hoon;Lee, Joo-Won;Kim, Jai-Kyeong;Ju, Byeong-Kwon;Jang, Jin;Oh, Myung-Hwan;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.920-923
    • /
    • 2003
  • We fabricated composite materials as a pellet structure with the various kinds of inorganic material powder. The composite materials were deposited onto the plastic film by the electron beam evaporation and water vapor transmission rates (WVTRs) were measured by the MOCON facility. As a result of WVTRs, the composite materials had lower WVTR value than any other inorganic materials. So, these films were proposed to protect the organic light emitting device (OLED) from moisture and oxygen. We can consider that the composite thin-film is one of the more suitable candidates for the thin-film passivation layer in the OLED. And, we are processing the XRD, XPS and EPMA to analyze the property of the composite material. We will also analyze properties of the current-voltage and luminescence for lifetime both the composite thin-film passivated OLED and non-passivated OLED.

  • PDF

Enhancement of Hole Injection in Organic Light Emitting Device by using Ozone Treated Ag Nanodots Dispersed on ITO Anode (나노 사이즈의 Ag dot을 성막한 ITO 애노드의 오존처리에 의한 유기발광소자의 홀 주입 특성 향상)

  • Moon, Jong-Min;Bae, Jung-Hyeok;Jeong, Soon-Wook;Li, Min-Su;Kim, Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1037-1043
    • /
    • 2006
  • We report the enhancement of hole injection using ozone-treated Ag nanodots dispersed on indium tin oxide anode in $Ir(ppy)_3-doped$ phosphorescent OLED. Phosphorescent OLED fabricated on Ag nanodots dispersed ITO anode showed a lower turn on voltage and higher luminescence than those of OLEDS prepared commercial ITO anode. Synchrotron x-ray scattering examination results showed that the Ag nanodots dispersed on ITO anode is amorphous structure due to low deposition temperature. It was thought that decrease of the energy barrier height as Ag nanodots changed to $AgO_x$ nanodots by surface treatment using ozone for 10 min led to enhancement of hole injection in phosphorescent OLED. Futhermore, efficient hole injection can be explained by increase of contact region between anode material and organic material through introduction of $Ag_2O$ nanodots.

Red Fluorescent Organic Light-Emitting Diodes Using Modified Pyran-containing DCJTB Derivatives

  • Lee, Kum-Hee;Kim, Sung-Min;Kim, Jeong-Yeon;Kim, Young-Kwan;Yoon, Seung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2884-2888
    • /
    • 2010
  • Two red fluorescent DCJTB derivatives (Red 1 and 2) based on modified pyrans were synthesized and their electroluminescent properties were investigated. Multilayered OLEDs were fabricated with the device structure of ITO/NPB (40 nm)/Red 1, 2 or DCJTB (0.5 or 1%): $Alq_3$ (20 nm)/$Alq_3$ (40 nm)/Liq (2 nm)/Al. All devices exhibited efficient red emissions. In particular, a device containing emitter Red 2 as a dopant in the emitting layer, the maximum luminance was $8737\;cd/m^2$ at 12.0 V, the luminous and power efficiencies were 2.31 cd/A and 1.25 lm/W at $20\;mA/cm^2$, respectively. The peak wavelength of the electroluminescence was 638 nm with the CIE (x,y) coordinates of (0.63, 0.36) at 7.0 V.

Electrical Characteristics on the Variation of Thickness and Deposition Rate in Organic Layer of OLEDs (유기발광 소자에서 유기층의 두께 및 증착속도 변화에 따른 전기적 특성)

  • Lee, Young-Hwan;Kim, Weon-Jong;Yang, Jae-Hoon;Shin, Jong-Yeol;Kim, Tae-Wan;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.362-366
    • /
    • 2006
  • OLEDs(Organic Light Emitting Diodes) are attractive as alternative display components because of their relative merits of being self-emitting, having large intrinsic viewing angle and fast switching speed. But because of their relatively short history of development, much remains to be studied in terms of their basic device physics and design, manufacturing techniques, stability and so on. We investigated electrical properties of N, N-diphenyl-N, N bis (3-methyphenyl-l,1'-biphenyl-4,4'-diamine (TPD) and tris-8-hydroxyquinoline aluminum$(Alq_3)$ when their thicknesses were changed variedly from 3:7 to 5:5 of their thickness ratios. And we also studied properties of OLED depend on their deposition rate between $0.05{\sim}0.2$ nm/s.

Light extraction efficiency enhancement on organic light-emitting device by microlens array attachment: a systematic approach

  • Hsu, Sheng-Chih;Chen, Kuan-Yu;Lin, Hoang-Yan;Lee, Jiun-Haw;Lin, Chung-Yu;Wei, Mao-Kuo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1819-1824
    • /
    • 2006
  • A microlens arrays formed by thermal reflow method is attached to an OLED device and the light extraction efficiency which includes luminance and power information is determined by adjusting the area ratio and the height ratio.

  • PDF

High Efficiency Blue Organic Light-Emitting Diode with Three Organic Layer Structure (3-유기층 구조를 갖는 고효율 청색 유기발광소자)

  • Jang, Ji Geun;Ji, Hyun Jin;Kim, Hyun;Kim, Jae Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.33-37
    • /
    • 2012
  • Simple and high efficiency blue organic light-emitting diodes with three organic layers of N, N'-diphenyl-N,N'-bis-[4-(phenyl-m-tolylamino)-phenyl]-biphenyl-4,4'-diamine[DNTPD]/1,1-bis-(di-4-polya-minophenyl)cyclohexane[TAPC]/electron transport material [ET-137] were fabricated and their electroluminescent characteristics were evaluated according to the TAPC thickness variation in a range of $50{\sim}300{\AA}$. Electroluminescence spectra of the devices with structure of DNTPD/TAPC/ET-137 showed all the same central emission wavelengths of 455 nm under an applied voltage of 7V, which were similar with that of the device with ET-137 only. On the other hand, the electroluminescence spectra of the device with structure of DNTPD/ET-137 without TAPC layer showed double emission peaks at the wavelengths of 455 nm and 561 nm under an applied voltage of 7V. In the devices with structure of DNTPD/TAPC/ET-137, single peak blue emission was not maintained in the device with $50{\AA}$-thick TAPC above 8V by the formation of exciplex. In the device with $300{\AA}$-thick TAPC, however, single peak blue emission was maintained until 10 V. According to the thickness increase of TAPC in the fabricated devices, the current density and luminance decreased, but the luminous efficiency and roll-off characteristics were improved.

Controlled Charge Carrier Transport and Recombination for Efficient Electrophosphorescent OLED

  • Chin, Byung-Doo;Choi, Yu-Ri;Eo, Yong-Seok;Yu, Jai-Woong;Baek, Heume-Il;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1418-1420
    • /
    • 2008
  • In this paper, the light emitting efficiency, spectrum, and the lifetime of the phosphorescent devices, whose emission characteristics are strongly dominated not only by the energy transfer but also by the charge carrier trapping induced by the emissive dopant, are explained by differences in the energy levels of the host, dopant, and nearby transport layers. On the basis of our finding on device performance and photocurrent measurement data by time-of-flight (TOF), we investigated the effect of the difference of carrier trapping dopant and properties of the host materials on the efficiency roll-off of phosphorescent organic light emitting diode (OLED), along with a physical interpretation and practical design scheme, such as a multiple host system, for improving the efficiency and lifetime of devices.

  • PDF

Treatments of Electron Transport Layer in the Fabrication of High Luminous Green Phosphoresent OLED (고휘도 녹색 인광 OLED 제작에서 전자수송층 처리)

  • Jang, Ji-Geun;Kim, Won-Ki;Shin, Sang-Baie;Shin, Hyun-Kwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.5-9
    • /
    • 2008
  • New devices with structure of ITO/2TNATA/NPB/TCTA/CBP:7%Ir(ppy)$_3$/BCP/ETL/LiF/Al were proposed to develop high luminous green phosphorescent organic light emitting diodes and their electroluminescent properties were evaluated. The experimental devices were divided into two kinds according to the material ($Alq_3$ or SFC137) used as an electron transport layer (ETL). Luminous intensities of the devices using $Alq_3$ and SFC137 as electron transport layers were 27,500 cd/$m^2$ and 51,500 cd/$m^2$ at an applied voltage of 9V, respectively. The current efficiencies of both devices were similar as 12.6 cd/A under a luminance of 10,000 cd/$m^2$, while showed slower decay in the device with SFC137 as an ETL according to the further increase of luminance. Current density and luminance of the device with SFC137 as an electron transport layer were higher at the same voltage than those of the device with $Alq_3$ as an ETL.

  • PDF