• 제목/요약/키워드: OLED(Organic Light-Emitting

검색결과 694건 처리시간 0.035초

유기발광다이오드 디스플레이의 광효율 향상을 위한 반사방지필름 설계 (Antireflective Film Design to Improve the Optical Efficiency of Organic Light-emitting Diode Displays)

  • 김기만;임영진;레 반 도안;이기동;이승희
    • 한국광학회지
    • /
    • 제29권6호
    • /
    • pp.262-267
    • /
    • 2018
  • 본 논문에서는 유기발광다이오드 디스플레이(OLED)의 광 효율을 향상시키기 위해 방사방지필름을 새롭게 디자인하였다. 현재 상용화되고 있는 편광판의 편광도와 투과율을 변화시켜 OLED 반사방지필름에 사용하였을 경우 정면과 측면방향의 반사특성을 계산하였다. 그 결과 편광도가 99.995%나 99.990%인 상용화된 편광판의 편광도를 99.9% 수준으로 떨어뜨릴 경우, 반사방지필름의 평균 시감반사율은 사람의 눈으로 알아차리기 힘든 약 0.1% (증가율 환산 2.5%) 상승한 반면, 투과율은 기존보다 약 1.63~3.34%(증가율 환산 4.2~8.2%) 상승하였다. 이 결과는 기존 OLED에서 저반사율을 유지하면서 광효율을 상승시킬 수 있는 광학설계 조건을 제시하였다.

The Organic-Inorganic Hybrid Encapsulation Layer of Aluminium Oxide and F-Alucone for Organic Light Emitting Diodes

  • 권덕현;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.374-374
    • /
    • 2012
  • Nowadays, Active Matrix Organic Light-Emitting Diodes (AM-OLEDs) are the superior display device due to their vivid full color, perfect video capability, light weight, low driving power, and potential flexibility. One of the advantages of AM-OLED over Liquid Crystal Display (LCD) lies in its flexibility. The potential flexibility of AM-OLED is not fully explored due to its sensitivity to moisture and oxygen which are readily present in atmosphere, and there are no flexible encapsulation layers available to protect these. Therefore, we come up with a new concept of Inorganic-Organic hybrid thin film as the encapsulation layer. Our Inorganic layer is Al2O3 and Organic layer is F-Alucone. We deposited these layers in vacuum state using Atomic Layer Deposition (ALD) and Molecular Layer Deposition (MLD) techniques. We found the results are comparable to commercial requirement of 10-6 g/m2 day for Water Vapor Transmission Rate (WVTR). Using ALD and MLD, we can control the exact thin film thickness and fabricate more dense films than chemical or physical vapor deposition methods. Moreover, this hybrid encapsulation layer potentially has both the flexibility of organic layers and superior protection properties of inorganic layer.

  • PDF

Electro-optical Characterization of OLED Device

  • Lee Soon-Seok;Kim Ki-Seok;Lim Sung-Kyoo
    • International Journal of Contents
    • /
    • 제2권3호
    • /
    • pp.6-10
    • /
    • 2006
  • Small molecule OLED devices were fabricated and the electro-optical characteristics were analyzed. The luminance and color coordinate of the fabricated OLED device were $24,390cd/m^2$ and (x=0.15, y=0.22), respectively. Current efficiency of 6.8 cd/A and power efficiency of 2.4 lm/W were also obtained under DC operating condition. Transient light intensity was also measured by using Si photodiode.

  • PDF

유기발광 디바이스용 녹색 발광재료의 합성 (Synthesis of Green Emitting Materials for OLED)

  • 정평진;김미래
    • 공업화학
    • /
    • 제22권6호
    • /
    • pp.594-598
    • /
    • 2011
  • 본 연구는 유기발광 디바이스용(Organic Light Emitting Device, OLED) 녹색 발광재료인 3-크로몬알데히드 유도체의 합성에 관한 것으로서, 유도체들은 탈수 축합반응으로 합성되었다. 이들은 전자흡인성의 3-크로몬알데히드류와 전자공여성의 디아민류의 공액구조를 가지고 있다. 합성한 물질들은 각각 FT-IR, $^1H-NMR$ 스펙트럼으로부터 그의 구조적 특성을 확인하였고, 융점, 수득률 등을 통하여 열적 안정성, 반응성들을 확인하였으며, 여기스펙트럼과 발광스펙트럼으로부터 자외가시광과 발광특성을 확인하였다.

IZTO 애노드를 이용하여 제작한 인광 OLED 및 플랙시블 OLED 특성 (Characteristics of phosphorescent OLEDs and flexible OLED fabricated indium-zinc-tin-oxide anode)

  • 최광혁;배정혁;문종민;정진아;김한기;강재욱;김장주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.399-400
    • /
    • 2007
  • In this work, we have investigated the characteristics of the phosphorescent OLED and flexible OLED fabricated on IZTO/glass and IZTO/PET anode film grown by magnetron sputtering, respectively. Electrical and optical characteristics of amorphous IZTO/glass anode exhibited similar to commercial ITO anode even though it was deposited at room temperature. In addition, the amorphous IZTO anode showed higher work function than that of the commercial ITO anode after ozone treatment for 10 minutes. Furthermore, a phosphorescent OLED fabricated on amorphous IZTO anode film showed improved current-voltage-luminance characteristics, external quantum efficiency and power efficiency in contrast with phosphorescent OLED fabricated on commercial ITO anode film. This indicates that IZTO anode is promising alternative anode materials for anode in OLEDs and flexible OLEDs.

  • PDF

대향식 스퍼터링법으로 증착된 ITO 양극 위에 제작된 OLED 성능 (Performance of OLED Fabricated on the ITO Deposited by Facing Target Sputtering)

  • 윤철;김상호
    • 한국표면공학회지
    • /
    • 제41권5호
    • /
    • pp.199-204
    • /
    • 2008
  • Indium tin oxide (ITO) has been commonly used as an anode for organic light emitting diode (OLED), because of its relatively high work function, high transmittance, and low resistance. The ITO was mostly deposited by capacitive type DC or RF sputtering. In this study we introduced a new facing target sputtering method. On applying this new sputtering method, the effect of fundamental deposition parameters such as substrate heating and post etching were investigated in relation to the resultant I-V-L characteristics of OLED. Three kinds of ITOs deposited at room temperature, at $400^{\circ}C$ and at $400^{\circ}C$ with after surface modification by $O_2$ plasma etching were compared. The OLED on ITO deposited with substrate heating and followed by etching showed better I-V-L characteristics, which starts to emit light at 4 volts and has luminescence of $65\;cd/m^2$ at 9 volts. The better I-V-L characteristics were ascribed to the relevant surface roughness with uniform micro-extrusions and to the equi-axed micromorphology of ITO surface.

New ETL 층에 의한 저전압 구동 백색 발광 OLED (Low voltage driving white OLED with new electron transport layer)

  • 김태용;서원규;문대규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.100-101
    • /
    • 2008
  • We have developed low voltage driving white organic light emitting diode with new electron transport layer. The with light emission was realized with a yellow dopant, rubrene and blue-emitting DPVBi layer. The new electron transport layer results in very high current density at low voltage, causing a reduction of driving voltage. The device with new electron transport layer shows a brightness of 1000 cd/m2 at 4.3 V.

  • PDF

Manufacturing of Organic Light Emitting Display by Polymer Inkjet Printing

  • Kim, Myong-Ki;Shin, Kwon-Yong;Lee, Sang-Ho;Hwang, Jun-Young;Kang, Heui-Seok;Kang, Kyung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1476-1478
    • /
    • 2009
  • The characteristics of polymer inkjet printing were investigated systematically in this paper. PEDOT/PSS as a hole injection layer and MEH-PPV as a light emitting layer were used for inkjet printing experiment. Inkjet head controlling technology and surface modification technology were also applied for polymer inkjet printing. With the developed polymer inkjet printing technology, OLED(Organic Light Emitting Display) was successfully fabricated and demonstrated.

  • PDF

다층구조 배색 유기발전소자의 제작 및 특성 분석에 관한 연구 (A Study on the Fabrication and Characteristic Analysis of Multiheterostructure White Organic Light Emitting Device)

  • 노병규;강명구;오환술
    • 한국전기전자재료학회논문지
    • /
    • 제15권5호
    • /
    • pp.429-434
    • /
    • 2002
  • In this paper, multiheterostructure white organic light-emitting device was fabricated by vacuum evaporation. The structure of white organic light-emitting device is ITO/CuPc/TPD/DPBi:DPA/$Alq_3/Alq_3$:DCJTB/BCT/$Alq_3$/Ca/Al. Three primary colors are implemented with DPVBi, Alq$_3$and DCJTB. The maximum EL wavelength of the fabricated white organic light-emitting device is 647nm. And the CIE coordinate is (0.33, 0.33) at 13 V. In the fabrication of white organic light-emitting devices with DCJTB, $Alq_3$, DPVBi, the EL spectrum has two peaks at 492nm, 647nm. Two peaks appeared because the blue light is combined with green light. The maximum wavelength of red light is not changed with applied voltage. After voltage applied, for the first time, the electrons met the holes in the red emission layer and emitted red light. And then the electrons moved to the green emission layer, and blue emission layer continuously. Finally, when all of the emission layer activated, the white light is emitted.