• 제목/요약/키워드: OLED(Organic Light Emitting Diode)

검색결과 292건 처리시간 0.03초

유기발광(有機發光) 다이오드의 가속(加速) 수명(壽命) 시험(試驗)에 관한 연구(硏究) (Life Estimation of Organic Light Emission Diode by Accelerated Test)

  • 최영태;조재립
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 2010년도 춘계학술대회
    • /
    • pp.262-268
    • /
    • 2010
  • Organic light emitting diode is developed fast from 1963 after discovering electric light emitting phenomenon. First PMOLED(passive matrix OLED) product is manufactured and AMOLED(active matrix OLED) using TFT(thin film ransistor) is now in the center. PMOLED is mainly mounted at sub display. but AMOLED is mounted at main display. Also AMOLED expand the market to PMP(portable multimedia players), navigation and TV. Even thought OLED's market is opening to many applications, OLED is worried about lifetime until now. That's appeared in market in a very short time and is not known well about result of OLED's lifetime and reliability test. And there is no standard ssessment method and not enough study to standardization the method. A study's purpose is reduce the time for life test by accelerated current and it can do production possible design by accelerated life model in design phase. It's must be add to process variables and design variables(like ratio of light emitting, organic material structure, condition of aging, etc) to make the best use of supplied accelerated lifetime model in this paper. In terms of lifetime it needs each criterion of applications because of image sticking. In conclusion, it's possible to discover new defect because there is not much time to be opened in market and develop a method of manufacturing process & materials, so we need to study on the subject of this paper continuously.

  • PDF

Design of white tandem organic light-emitting diodes for full-color microdisplay with high current efficiency and high color gamut

  • Cho, Hyunsu;Joo, Chul Woong;Choi, Sukyung;Kang, Chan-mo;Kim, Gi Heon;Shin, Jin-Wook;Kwon, Byoung-Hwa;Lee, Hyunkoo;Byun, Chun-Won;Cho, Nam Sung
    • ETRI Journal
    • /
    • 제43권6호
    • /
    • pp.1093-1102
    • /
    • 2021
  • Microdisplays based on organic light-emitting diodes (OLEDs) have a small form factor, and this can be a great advantage when applied to augmented reality and virtual reality devices. In addition, a high-resolution microdisplay of 3000 ppi or more can be achieved when applying a white OLED structure and a color filter. However, low luminance is the weakness of an OLED-based microdisplay as compared with other microdisplay technologies. By applying a tandem structure consisting of two separate emission layers, the efficiency of the OLED device is increased, and higher luminance can be achieved. The efficiency and white spectrum of the OLED device are affected by the position of the emitting layer in the tandem structure and calculated via optical simulation. Each white OLED device with optimized efficiency is fabricated according to the position of the emitting layer, and red, green, and blue spectrum and efficiency are confirmed after passing through color filters. The optimized white OLED device with color filters reaches 97.8% of the National Television Standards Committee standard.

Bipolar Transport Model of Single Layer OLED for Embedded System

  • Lee, Jung-Ho;Han, Dae-Mun;Kim, Yeong-Real
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
    • /
    • pp.237-241
    • /
    • 2005
  • We present a device model for organic light emitting diodes(OLEDs) which includes charge injection, transport, recombination, and space charge effects in the organic materials. The model can describe both injection limited and space charge limited current flow and the transition between them. Calculated device current, light output, and quantum and power efficiency are presented for different cases of material and device parameters and demonstrate the improvements in device performance in bilayer devices. These results are interpreted using the calculated spatial variation of the electric field, charge density and recombination rate density in the device. We find that efficient OLEDs are possible for a proper choice of organic materials and contact parameters.

  • PDF

유기 박막 트랜지스터를 이용한 유연한 디스플레이의 게이트 드라이버용 로직 게이트 구현 (Implementation of Logic Gates Using Organic Thin Film Transistor for Gate Driver of Flexible Organic Light-Emitting Diode Displays)

  • 조승일;미즈카미 마코토
    • 한국전자통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.87-96
    • /
    • 2019
  • 유기 박막 트랜지스터 (OTFT) 백플레인을 이용한 유연한 유기 발광 다이오드 (OLED) 디스플레이가 연구되고 있다. OLED 디스플레이의 구동을 위해서 게이트 드라이버가 필요하다. 저온, 저비용 및 대 면적 인쇄 프로세스를 사용하는 디스플레이 패널의 내장형 게이트 드라이버는 제조비용을 줄이고 모듈 구조를 단순화한다. 이 논문에서는 유연한 OLED 디스플레이 패널의 내장형 게이트 드라이버 제작을 위하여 OTFT를 사용한 의사 CMOS (pseudo complementary metal oxide semiconductor) 로직 게이트를 구현한다. 잉크젯 인쇄형 OTFT 및 디스플레이와 동일한 프로세스를 사용하여 유연한 플라스틱 기판 상에 의사 CMOS 로직 게이트가 설계 및 제작되며, 논리 게이트의 동작은 측정 실험에 의해 확인된다. 최대 1 kHz의 입력 신호 주파수에서 의사 CMOS 인버터의 동작 결과를 통하여 내장형 게이트 드라이버의 구현 가능성을 확인하였다.

Ultra Thin Film Encapsulation of Organic Light Emitting Diode on a Plastic Substrate

  • Park, Sang-Hee;Oh, Ji-Young;Hwang, Chi-Sun;Lee, Jeong-Ik;Yang, Yong-Suk;Chu, Hye-Yong;Kang, Kwang-Yong
    • ETRI Journal
    • /
    • 제27권5호
    • /
    • pp.545-550
    • /
    • 2005
  • We have carried out the fabrications of a barrier layer on a polyethersulfon (PES) film and organic light emitting diode (OLED) based on a plastic substrate by means of atomic layer deposition (ALD). Simultaneous deposition of 30 nm $AlO_x$ film on both sides of the PES film gave a water vapor transition rate (WVTR) of $0.062 g/m^2/day (@38^{\circ}C,\;100%\;R.H.)$. Further, the double layer of 200 nm $SiN_x$ film deposited by plasma enhanced chemical vapor deposition (PECVD) and 20 nm $AlO_x$ film by ALD resulted in a WVTR value lower than the detection limit of MOCON. We have investigated the OLED encapsulation performance of the double layer using the OLED structure of ITO / MTDATA (20 nm) / NPD (40 nm) / AlQ (60 nm) / LiF (1 nm) / Al (75 nm) on a plastic substrate. The preliminary life time to reach 91% of the initial luminance $(1300 cd/m^2)$ was 260 hours for the OLED encapsulated with 100 nm of PECVD-deposited $SiN_x$ and 30 nm of ALD-deposited $AlO_x$.

  • PDF

OLED Display의 RGB 채널간 불균형 보정을 위한 Adaptive Color Shifter (Adaptive Color Shifter for RGB Channel Unbalance in Organic Light Emitting Diode Display)

  • 조호상;장경훈;김창훈;강봉순
    • 한국정보통신학회논문지
    • /
    • 제16권8호
    • /
    • pp.1653-1662
    • /
    • 2012
  • 최근 차세대 디스플레이로 각광받고 있는 OLED는 다양한 장점들을 가지고 있다. 하지만 발광 소자간의 광효율의 불균형으로 인해 표현하고자 하는 색감이 붕괴된다. 본 논문에서는 영상처리를 이용하여 적은 자원으로 RGB 채널의 불균형문제를 해결 하고 효율이 약한 채널이 넓은 색상 표현 범위를 가질 수 있도록 하는 Adaptive Color Shifter(ACS)를 제안하였다. 제안하는 ACS를 다양한 영상에 적용하여 시뮬레이션 하고 색상 히스토그램과 CIE-1931 xyz 색 공간을 이용하여 수치적인 분석을 하였다.

잉크젯 프린팅 기술을 이용한 유기 발광 다이오드 제작 (Fabrication of organic light emitting diode with inkjet printing technology)

  • 김명기;신권용;황준영;강경태;강희석;이상호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1448-1449
    • /
    • 2008
  • Inkjet printing is commonly used in depositing the solution of functional materials on the specific locations of a substrate, and also it can provide easy and fast patterning of polymer films over a large area. Inkjet printing is applicable to fabricating an organic light emitting diode (OLED), since conducting materials used as emissive electroluminescent layers can be manufactured into inks for ink jetting. By using the inkjet technology, we have succeeded in patterning a poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) layer and a poly[2-Methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) layer on the Indume tin oxide (ITO) patterned substrates, and fabricating organic light emitting diodes.

  • PDF

HTL:EML(DPVBi:NPB)층의 조성비 변화에 따른 청색 유기 발광 소자 개발 (Development of Blue Organic Light-emitting Diodes(OLEDs) Due to Change in Mixed Ratio of HTL:EML(DPVBi:NPB) Layers)

  • 이태성;이병욱;홍진수;김창교
    • 한국전기전자재료학회논문지
    • /
    • 제21권9호
    • /
    • pp.853-858
    • /
    • 2008
  • The structure of organic light-emitting diodes(OLEDs) with typical heterostructure consists of anode, hole injection layer, hole transport layer, light-emitting layer, electron transport layer, electron injection layer, and cathode. 4,4bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl(NPB) used as a hole transport layer and 4'4-bis(2,2'-diphenyl vinyl)-1,1'-biphenyl(DPVBi) used as a blue light emitting layer were graded-mixed at selected ratio. Interface at heterojunction between the hole transport layer and the elecrtron transport layer restricts carrier's transfer. Mixing of the hole transport layer and the emitting layer reduces abrupt interface between the hole transport layer and the electron transport layer. The operating voltage of OLED devices with graded mixed-layer structure is 2.8 V at 1 $cd/m^2$ which is significantly lower than that of OLED device with typical heterostructure. The luminance of OLED devices with graded mixed-layer structure is 21,000 $cd/m^2$ , which is much higher than that of OLED device with typical heterostructure. This indicates that the graded mixed-layer enhances the movement of carriers by reducing the discontinuity of highest occupied molecular orbital(HOMO) of the interface between hole transport layer and emitting layer.

Efficient Organic Light-emitting Diodes by Insertion a Thin Lithium Fluoride Layer with Conventional Structure

  • Kim, Young-Min;Park, Young-Wook;Choi, Jin-Hwan;Kim, Jai-Kyeong;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • 제7권2호
    • /
    • pp.26-30
    • /
    • 2006
  • Insertion of a thin lithium fluoride (TLF) layer between an emitting layer (EML) and an electron transporting layer has resumed in the developement of a highly efficient and bright organic light-emitting diode (OLED). Comparing with the performance of the device as a function of position with the TLF layer in tris-(8-hydroxyquinoline) aluminum $(Alq_{3})$, we propose the optimal position for the TLF layer in the stacked structure. The fabricated OLED shows a luminance efficiency of more than 20 cd/A, a power efficiency of 12 Im/W (at 20 mA/$cm^{2}$), and a luminance of more than 22 000 cd/$m^{2}$ (at 100 mA/$cm^{2}$), respectively. We suggest that the enhanced performance of the OLED is probably attributed to the improvement of carrier balance to achieve a high level of recombination efficiency in an EML.

A Charge-Pump Passive-Matrix Pixel Driver for Organic Light Emitting Diodes

  • Seo, Jong-Wook;Kim, Han-Byul;Kim, Bong-Ok;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.108-112
    • /
    • 2002
  • A new pixel driving method for organic light-emitting diode (OLED) flat-panel display (FPD) is proposed. The new charge-pump passive-matrix pixel driver consists only of a storage capacitance and a rectifying diode, and no thin-film transistor (TFT) is needed. The new driver not only supplies a constant current to the OLED throughout the whole period of panel scanning like an active-matrix driver, but also provides a highly linear gray-scale control through a pure digital manner.

  • PDF