• 제목/요약/키워드: OLAP 큐브 저장

검색결과 23건 처리시간 0.027초

웹 서비스 기반의 웹 OLAP 큐브 브라우저 (A Web Services-based Web OLAP Cube Browser)

  • 배은주;김명미;김명
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (하)
    • /
    • pp.1819-1822
    • /
    • 2002
  • OLAP(On-line Analytical Processing)은 데이터를 다차원적으로 집계하여 그 결과를 온라인으로 사용자에게 제공함으로써 고부가가치 창출에 사용되는 비즈니스 인텔리젼스 기술 중의 하나이다. 질의 처리 시간 제약 조건을 만족하기 위해 OLAP 시스템들은 다차원적 집계 결과를 미리 계산하여 저장해 둔다. 이 때 저장되는 데이터를 OLAP 큐브(cube)라고 하며, 데이터의 분석은 주로 큐브를 브라우징하면서 이루어진다. 본 연구에서는 웹 서비스를 통해 큐브를 브라우징할 수 있는 ‘웹 OLAP 큐브 브라우저(WOCB)'를 개발하였다. WOCB는 본 연구팀이 개발한 웹 서비스 기반의 OLAP API인 XMLMD를 사용하여 개발되었으며, 웹 서비스를 통해 전송되는 OLAP 큐브 데이터를 XML, HTML, 엑셀, 그래프 등의 다양한 형태로 검색할 수 있는 기능을 제공한다. 본 연구 결과는 이기종 플랫폼 환경에 분산되어 있는 OLAP 서버들을 통합할 때 하나의 컴포넌트로 사용될 수 있다는 장점을 갖는다.

  • PDF

고속 질의처리를 위한 MOLAP 큐브 저장구조 (A MOLAP Cube Storage Scheme for Fast Query Processing)

  • 임윤선;양혜영;김명
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.127-129
    • /
    • 2001
  • 데이터 웨어하우스의 데이터를 다차원적으로 분석하여 그 결과를 온라인으로 사용자에게 제공하는 것을 OLAP 이라고 하고, 이 때 데이터를 큐브라고 불리는 배열에 저장해 두고 데이터를 위치정보를 통해 엑세스하는 시스템을 MOLAP 시스템이라고 한다. OLAP 연산 도중에 디스크로부터 읽어야 하는 데이터의 양을 감소시키기 위해 큐브를 압축된 청크 단위로 저장하는 방안이 이미 제안되고 있으나, 큐브의 데이터 분포, 청크와 디스크 블록의 크기 관계 등을 고려하여 디스크 엑세스를 줄이는 방안에 관한 연구는 아직 소개된 바가 없다. 본 연구에서는 청크들을 밀도를 기준으로하여 군집화 하고, 큐브내의 인접 청크들을 가능한 한 동일한 디스크 블록에 속하게 함으로써, OLAP의 주요 연산인 슬라이스, 다이스와 같은 연산의 속도를 향상시키는 방안을 제시한다. 제안한 저장구조는 실험을 통해 그 효율성을 증명하였다.

  • PDF

Z-인덱스 기반 MOLAP 큐브 저장 구조 (A Z-Index based MOLAP Cube Storage Scheme)

  • 김명;임윤선
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제29권4호
    • /
    • pp.262-273
    • /
    • 2002
  • MOLAP(multi-dimensional online analytical processing)은 데이타의 다차원적 분석 기술로서, 이는 질의 처리 속도를 높이기 위해 데이타를 큐브(cube)라고 불리는 다차원 배열에 저장하고 배열 인덱스를 사용하여 데이타를 엑세스한다. 큐브는 다양한 방식으로 디스크에 저장될 수 있으며 이 때 사용되는 방식에 따라 MOLAP의 주요 연산인 슬라이스와 다이스 연산 속도가 크게 영향을 받는다. 이러한 연산들을 효율적으로 처리하기 위해 다차원 배열을 작은 크기의 청크로 나누고 이 들 중에서 희박한 청크들을 압축하여 저장하는 기법이 [1]에 제안되어 있다. 이 방식에서는 청크들을 행우선 순서로 디스크에 저장한다. 본 연구에서는 청크들을 밀도와 인접도 기준으로 배치시킴으로써 슬라이스와 다이스 연산 속도를 향상시키는 방법을 제시한다. 청크 밀도를 이용하여 청크들을 디스크 블록 경계에 가능한 한 맞추었고, Z 인덱싱을 사하여 인접한 저밀도 청크들을 군집화 함으로써 디스크 I/O의 속도를 높였다. 제안한 큐브 저장 방식은 일반적 비즈니스 데이타의 분석에 흔히 사용되는 3~5차원의 큐브 저장에 효율적이라는 것을 실험적으로 보였다.

OLAP에서 다차원 파일 구조를 사용한 큐브 생성 방법 (Effective Cube Computation using Multidimensional File Structure in OLAP)

  • 김학경;김진호;노희영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
    • /
    • pp.199-201
    • /
    • 2003
  • 온라인 분석처리 시스템의 핵심 기술인 큐브를 효과적으로 산출하기 위한 많은 연구들이 이루어 졌다. 이러한 연구는 크게 온라인 분석처리 시스템의 결과 데이터를 저장하는 방식에 의해 MOLAP과 ROLAP으로 구분하여 이루어 졌다. 최근에 온라인 분석처리 시스템에서 큐브 산출에 대한 연구로 다중키 엑세스를 효율적으로 처리하는 다차원 파일 구조를 사용하여 집계 연산의 효율을 높이는 연구가 이루어졌다. 본 논문은 이러한 연구들을 바탕으로 다차원 파일 구조를 사용하여 효과적으로 큐브를 산출하고 결과 값을 미리 저장하는 일반적인 방법을 제안한다.

  • PDF

중첩된-서브큐브: 전위-합 큐브를 위한 손실 없는 압축 방법 (Overlapped-Subcube: A Lossless Compression Method for Prefix-Sun Cubes)

  • 강흠근;민준기;전석주;정진완
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권6호
    • /
    • pp.553-560
    • /
    • 2003
  • 영역 질의는 의사결정에서 자주 사용되는 중요한 질의이다. 그러나, 영역 질의를 처리하기 위해서는 많은 점(cell)들이 검색되어야 하기 때문에 효율적인 처리가 쉽지 않았다. 이러한 문제를 해결하기 위해서 영역의 크기에 관계없이 일정한 시간에 영역 질의를 처리할 수 있는 전위-합 큐브(prefix-sum cube)가 제안되었다. 그러나, 전위-합 큐브는 영역 질의의 처리는 효율적으로 할 수 있지만, 그것을 저장하기 위해 매우 큰 저장 공간이 필요하다는 문제를 갖고 있다. 본 논문에서는 전위-합 큐브의 이 문제를 해결하기 위해서 손실 없이 전위-합 큐브를 압축하는 중첩된-서브큐브 압축 방법을 제안한다. 중첩된-서브큐브 압축 방법은 전위-합 큐브의 압축을 위해서 만들어진 것으로 압축된 상태에서 저장된 값을 검색할 수 있는 매우 유용한 특징이 있다. 이 특징으로 인해, 질의 처리 시 압축된 전위-합 큐브를 그대로 사용할 수 있다. 압축된 전위-합 큐브를 사용하면, 동일한 크기의 버퍼에 전위-합 큐브의 더 많은 부분을 저장할 수 있다. 이것은 질의 처리 시 디스크 입출력의 횟수를 획기적으로 감소시킨다.

청크 기반 MOLAP 큐브를 위한 비트맵 인덱스 (A Bitmap Index for Chunk-Based MOLAP Cubes)

  • 임윤선;김명
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권3호
    • /
    • pp.225-236
    • /
    • 2003
  • 다차원 온라인 분석처리 (MOLAP, Multidimensional On-line Analytical Processing) 시스템은 데이타를 큐브라고 불리는 다차원 배열에 저장하고 배열 인덱스를 이용하여 데이타를 엑세스한다. 큐브를 디스크에 저장할 때 각 변의 길이가 같은 작은 청크들로 조각내어 저장하게 되면 데이타 클러스터링 효과를 통해 모든 차원에 공평한 질의 처리 성능이 보장되며, 이러한 큐브 저장 방법을 ‘청크기반 MOLAP 큐브’ 저장 방법이라고 부른다. 공간 효율성을 높이기 위해 밀도가 낮은 청크들은 또한 압축되어 저장되는데 이 과정에서 데이타의 상대 위치 정보가 상실되며 원하는 청크들을 신속하게 엑세스하기 위해 인덱스가 필요하게 된다. 본 연구에서는 비트맵을 사용하여 청크기반 MOLAP 큐브를 인덱싱하는 방법을 제시한다. 인덱스는 큐브가 생성될 때 동시에 생성될 수 있으며, 인덱스 수준에서 청크들의 상대 위치 정보를 보존하여 청크들을 상수 시간에 검색할 수 있도록 하였고, 인덱스 블록마다 가능한 많은 청크들의 위치 정보가 포함되도록 하여 범위 질의를 비롯한 OLAP 주요 연산 처리 시에 인덱스 엑세스 회수를 크게 감소시켰다. 인덱스의 시간 공간적 효율성은 다차원 인덱싱 기법인 UB-트리, 그리드 파일과의 비교를 통해 검증하였다.

관계 DBMS 상에서 전위 방식의 OLAP 큐브 생성 알고리즘의 성능 평가 (Performance Evaluation of Front-End OLAP Cube Generation Algorithms on Relational DBMS)

  • 조선화;김진호;문양세
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.163-165
    • /
    • 2005
  • ROLAP 시스템에서는 다차원 OLAP 큐브를 관계 데이터베이스 내에 여러 집계 테이블을 사용하여 저장하며, 관계 DBMS 기능을 그대로 이용하므로 구현이 간단하다. 이들 집계 테이블들은 대용량의 소스 데이타(즉, 사실 테이블)를 정렬한 후 이에 대한 집계 값을 계산하므로 큐브를 생성하는데 많은 시간이 소요된다. 이러한 다차원 큐브를 효율적으로 생성할 수 있는 여러 가지 방법이 제안되었다. 이들 방법들은 큐브 생성 시간이 사실 테이블을 정렬하는데 주로 소요되므로 이 횟수를 줄이는 기법을 주로 제안하였다. 그러나 이러한 큐브 생성 알고리즘의 성능은 실제 DBMS 상에서 평가되지 않았다. 이 연구에서는 기존의 큐브 생성 알고리즘들을 관계 DBMS 상에서 그 성능을 비교 평가하였다.

  • PDF

공간 데이터웨어하우스에서 통합된 다차원 개념 계층 지원을 위한 데이터 큐브 색인 (Data Cude Index to Support Integrated Multi-dimensional Concept Hierarchies in Spatial Data Warehouse)

  • 이동욱;백성하;김경배;배해영
    • 한국멀티미디어학회논문지
    • /
    • 제12권10호
    • /
    • pp.1386-1396
    • /
    • 2009
  • 공간 데이터 웨어하우스에서 의사 결정 지원을 위한 공간 데이터 큐브는 크기가 방대하기 때문에 이를 효율적으로 관리하고 질의 처리의 수행 속도를 높이기 위한 공간 데이터 큐브 색인 기법이 요구된다. 제안된 데이터 큐브 색인 기법들 중 Hierarchical Dwarf는 사실 테이블의 튜플 필드 값의 중복을 이용하여 큐브를 압축하여 저장 비용과 질의응답 속도 면에서는 우수하지만 공간 차원을 지원하지 않으며, OLAP-favored Search 기법은 R-tree기반으로 공간 차원에 대한 계층적 집계 값을 제공하고 공간 OLAP 연산을 지원하지만 공간 및 비공간 차원들을 통합한 의사결정을 지원하지 못한다. 본 논문에서는 통합된 다차원 개념 계층지원을 위한 데이터 큐브 색인을 제안한다. 이는 개념 계층에 대한 정보와 사실 테이블에 지장된 튜플들을 참조하여 각각의 차원에 대해 생성된 개념 계층 트리들이 연결되어 통합된 색인이다. 이 때, 중복되는 개념계층 트리가 존재할 경우 이를 공유함으로써 저장 비용을 줄인다. 특히 제안 기법은 공간 및 비공간 차원이 통합된 개념 계층 트리들을 사용하므로, 공간 및 비공간 차원에 대한 OLAP 연산 비용이 감소한다.

  • PDF

H*-tree/H*-cubing: 데이터 스트림의 OLAP를 위한 향상된 데이터 큐브 구조 및 큐빙 기법 (H*-tree/H*-cubing-cubing: Improved Data Cube Structure and Cubing Method for OLAP on Data Stream)

  • 심상예;이연;이동욱;김경배;배해영
    • 정보처리학회논문지D
    • /
    • 제16D권4호
    • /
    • pp.475-486
    • /
    • 2009
  • 데이터 큐브는 다차원 데이터 분석 및 멀티레벨 데이터 분석에 많이 사용되고 있는 중요한 데이터 구조이다. 최근 데이터 스트림의 온라인 분석에 대한 수요가 증가하면서 스트림 큐브, Flow 큐브, S-큐브 등의 다양한 데이터 큐브 구조와 기법이 제안되었다. 그러나 기존 기법들은 데이터 큐브 생성 시 고비용이 요구되는 단점을 가지고 있어 효과적인 데이터 구조, 질의 방법 및 알고리즘에 대한 연구가 필요하다. 스트림 큐브 기법에서는 H-큐빙 기법을 사용하여 큐보이드를 선택하고, 계산된 셀들을 인기 패스에 있는 큐보이드들로 구성된 H-트리에 저장한다. 그러나 스트림 큐브 기법에서는 H-트리에 데이터를 비순차적으로 삽입하기 때문에 H-큐빙 기법을 사용하여 질의를 처리할 때 제한성을 갖고 있다. 본 논문에서는 데이터의 트리 구조의 각 층에 대한 인덱스를 구축하여 스트림 데이터에 대한 빠른 삽입 연산을 지원하는 $H^*$-tree 구조와, popular-path에 존재하지 않는 큐보이드를 빨리 계산하여 스트림 데이터에 대한 빠른 애드 혹 질의 응답을 지원하는 $H^*$-cubing 기법을 제안한다. 성능평가를 통하여 제안한 $H^*$-tree 기법은 보다 적은 큐브 구축 시간을 지원하며, $H^*$-cubing 기법이 stream cube 기법보다 빠른 애드 혹질의 응답 시간을 소요하며, 보다 적은메모리를 사용함을 보여준다.

데이터베이스 클러스터 기반의 데이터 웨어하우스에서 실체화 뷰 저장 기법 (The Materialized View Storage Method in a Data Warehouse using Database Cluster)

  • 최준호;장용일;박순영;배해영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.106-108
    • /
    • 2004
  • 데이터 웨어하우스는 OLAP의 질의 처리 성능을 놓이고 사용자에게 빠른 응답을 제공하기 위긴 데이터 큐브의 결과를 실체화된 뷰로 저장한다. 최적의 사용자 응답 시간을 제공하기 위해서는 데이터 큐브의 전체를 저장하는 것이 졸지만 실체화 뷰는 일반적으로 물리적 저장소에 저장되기 때문에 데이터 큐브 전체를 저장하는 것은 저장 공간의 오버헤드를 초래하는 문제점을 가진다. 본 논문에서는 데이터베이스 클러스터에 대용량의 실제화 부를 저장하는 기법을 제안한다. 제안하는 기법은 실체화 뷰의 선택 기준으로 부의 실체화 이익과 뷰들 간의 의존성을 데이터베이스 클러스터 환경에 맞게 제시하고 선택 기준에 따라 실체화 뷰를 서로 다른 노드에 저장함으로서 각 노드들의 실체화 이익을 균등하게 유지한다. 이는 질의가 하나의 노드에 집중되는 현상을 방지함으로서 각 노드의 효율성을 최대로 높일 수 있는 기법이다.

  • PDF