OLAP(On-line Analytical Processing)은 데이터를 다차원적으로 집계하여 그 결과를 온라인으로 사용자에게 제공함으로써 고부가가치 창출에 사용되는 비즈니스 인텔리젼스 기술 중의 하나이다. 질의 처리 시간 제약 조건을 만족하기 위해 OLAP 시스템들은 다차원적 집계 결과를 미리 계산하여 저장해 둔다. 이 때 저장되는 데이터를 OLAP 큐브(cube)라고 하며, 데이터의 분석은 주로 큐브를 브라우징하면서 이루어진다. 본 연구에서는 웹 서비스를 통해 큐브를 브라우징할 수 있는 ‘웹 OLAP 큐브 브라우저(WOCB)'를 개발하였다. WOCB는 본 연구팀이 개발한 웹 서비스 기반의 OLAP API인 XMLMD를 사용하여 개발되었으며, 웹 서비스를 통해 전송되는 OLAP 큐브 데이터를 XML, HTML, 엑셀, 그래프 등의 다양한 형태로 검색할 수 있는 기능을 제공한다. 본 연구 결과는 이기종 플랫폼 환경에 분산되어 있는 OLAP 서버들을 통합할 때 하나의 컴포넌트로 사용될 수 있다는 장점을 갖는다.
데이터 웨어하우스의 데이터를 다차원적으로 분석하여 그 결과를 온라인으로 사용자에게 제공하는 것을 OLAP 이라고 하고, 이 때 데이터를 큐브라고 불리는 배열에 저장해 두고 데이터를 위치정보를 통해 엑세스하는 시스템을 MOLAP 시스템이라고 한다. OLAP 연산 도중에 디스크로부터 읽어야 하는 데이터의 양을 감소시키기 위해 큐브를 압축된 청크 단위로 저장하는 방안이 이미 제안되고 있으나, 큐브의 데이터 분포, 청크와 디스크 블록의 크기 관계 등을 고려하여 디스크 엑세스를 줄이는 방안에 관한 연구는 아직 소개된 바가 없다. 본 연구에서는 청크들을 밀도를 기준으로하여 군집화 하고, 큐브내의 인접 청크들을 가능한 한 동일한 디스크 블록에 속하게 함으로써, OLAP의 주요 연산인 슬라이스, 다이스와 같은 연산의 속도를 향상시키는 방안을 제시한다. 제안한 저장구조는 실험을 통해 그 효율성을 증명하였다.
MOLAP(multi-dimensional online analytical processing)은 데이타의 다차원적 분석 기술로서, 이는 질의 처리 속도를 높이기 위해 데이타를 큐브(cube)라고 불리는 다차원 배열에 저장하고 배열 인덱스를 사용하여 데이타를 엑세스한다. 큐브는 다양한 방식으로 디스크에 저장될 수 있으며 이 때 사용되는 방식에 따라 MOLAP의 주요 연산인 슬라이스와 다이스 연산 속도가 크게 영향을 받는다. 이러한 연산들을 효율적으로 처리하기 위해 다차원 배열을 작은 크기의 청크로 나누고 이 들 중에서 희박한 청크들을 압축하여 저장하는 기법이 [1]에 제안되어 있다. 이 방식에서는 청크들을 행우선 순서로 디스크에 저장한다. 본 연구에서는 청크들을 밀도와 인접도 기준으로 배치시킴으로써 슬라이스와 다이스 연산 속도를 향상시키는 방법을 제시한다. 청크 밀도를 이용하여 청크들을 디스크 블록 경계에 가능한 한 맞추었고, Z 인덱싱을 사하여 인접한 저밀도 청크들을 군집화 함으로써 디스크 I/O의 속도를 높였다. 제안한 큐브 저장 방식은 일반적 비즈니스 데이타의 분석에 흔히 사용되는 3~5차원의 큐브 저장에 효율적이라는 것을 실험적으로 보였다.
온라인 분석처리 시스템의 핵심 기술인 큐브를 효과적으로 산출하기 위한 많은 연구들이 이루어 졌다. 이러한 연구는 크게 온라인 분석처리 시스템의 결과 데이터를 저장하는 방식에 의해 MOLAP과 ROLAP으로 구분하여 이루어 졌다. 최근에 온라인 분석처리 시스템에서 큐브 산출에 대한 연구로 다중키 엑세스를 효율적으로 처리하는 다차원 파일 구조를 사용하여 집계 연산의 효율을 높이는 연구가 이루어졌다. 본 논문은 이러한 연구들을 바탕으로 다차원 파일 구조를 사용하여 효과적으로 큐브를 산출하고 결과 값을 미리 저장하는 일반적인 방법을 제안한다.
영역 질의는 의사결정에서 자주 사용되는 중요한 질의이다. 그러나, 영역 질의를 처리하기 위해서는 많은 점(cell)들이 검색되어야 하기 때문에 효율적인 처리가 쉽지 않았다. 이러한 문제를 해결하기 위해서 영역의 크기에 관계없이 일정한 시간에 영역 질의를 처리할 수 있는 전위-합 큐브(prefix-sum cube)가 제안되었다. 그러나, 전위-합 큐브는 영역 질의의 처리는 효율적으로 할 수 있지만, 그것을 저장하기 위해 매우 큰 저장 공간이 필요하다는 문제를 갖고 있다. 본 논문에서는 전위-합 큐브의 이 문제를 해결하기 위해서 손실 없이 전위-합 큐브를 압축하는 중첩된-서브큐브 압축 방법을 제안한다. 중첩된-서브큐브 압축 방법은 전위-합 큐브의 압축을 위해서 만들어진 것으로 압축된 상태에서 저장된 값을 검색할 수 있는 매우 유용한 특징이 있다. 이 특징으로 인해, 질의 처리 시 압축된 전위-합 큐브를 그대로 사용할 수 있다. 압축된 전위-합 큐브를 사용하면, 동일한 크기의 버퍼에 전위-합 큐브의 더 많은 부분을 저장할 수 있다. 이것은 질의 처리 시 디스크 입출력의 횟수를 획기적으로 감소시킨다.
다차원 온라인 분석처리 (MOLAP, Multidimensional On-line Analytical Processing) 시스템은 데이타를 큐브라고 불리는 다차원 배열에 저장하고 배열 인덱스를 이용하여 데이타를 엑세스한다. 큐브를 디스크에 저장할 때 각 변의 길이가 같은 작은 청크들로 조각내어 저장하게 되면 데이타 클러스터링 효과를 통해 모든 차원에 공평한 질의 처리 성능이 보장되며, 이러한 큐브 저장 방법을 ‘청크기반 MOLAP 큐브’ 저장 방법이라고 부른다. 공간 효율성을 높이기 위해 밀도가 낮은 청크들은 또한 압축되어 저장되는데 이 과정에서 데이타의 상대 위치 정보가 상실되며 원하는 청크들을 신속하게 엑세스하기 위해 인덱스가 필요하게 된다. 본 연구에서는 비트맵을 사용하여 청크기반 MOLAP 큐브를 인덱싱하는 방법을 제시한다. 인덱스는 큐브가 생성될 때 동시에 생성될 수 있으며, 인덱스 수준에서 청크들의 상대 위치 정보를 보존하여 청크들을 상수 시간에 검색할 수 있도록 하였고, 인덱스 블록마다 가능한 많은 청크들의 위치 정보가 포함되도록 하여 범위 질의를 비롯한 OLAP 주요 연산 처리 시에 인덱스 엑세스 회수를 크게 감소시켰다. 인덱스의 시간 공간적 효율성은 다차원 인덱싱 기법인 UB-트리, 그리드 파일과의 비교를 통해 검증하였다.
ROLAP 시스템에서는 다차원 OLAP 큐브를 관계 데이터베이스 내에 여러 집계 테이블을 사용하여 저장하며, 관계 DBMS 기능을 그대로 이용하므로 구현이 간단하다. 이들 집계 테이블들은 대용량의 소스 데이타(즉, 사실 테이블)를 정렬한 후 이에 대한 집계 값을 계산하므로 큐브를 생성하는데 많은 시간이 소요된다. 이러한 다차원 큐브를 효율적으로 생성할 수 있는 여러 가지 방법이 제안되었다. 이들 방법들은 큐브 생성 시간이 사실 테이블을 정렬하는데 주로 소요되므로 이 횟수를 줄이는 기법을 주로 제안하였다. 그러나 이러한 큐브 생성 알고리즘의 성능은 실제 DBMS 상에서 평가되지 않았다. 이 연구에서는 기존의 큐브 생성 알고리즘들을 관계 DBMS 상에서 그 성능을 비교 평가하였다.
공간 데이터 웨어하우스에서 의사 결정 지원을 위한 공간 데이터 큐브는 크기가 방대하기 때문에 이를 효율적으로 관리하고 질의 처리의 수행 속도를 높이기 위한 공간 데이터 큐브 색인 기법이 요구된다. 제안된 데이터 큐브 색인 기법들 중 Hierarchical Dwarf는 사실 테이블의 튜플 필드 값의 중복을 이용하여 큐브를 압축하여 저장 비용과 질의응답 속도 면에서는 우수하지만 공간 차원을 지원하지 않으며, OLAP-favored Search 기법은 R-tree기반으로 공간 차원에 대한 계층적 집계 값을 제공하고 공간 OLAP 연산을 지원하지만 공간 및 비공간 차원들을 통합한 의사결정을 지원하지 못한다. 본 논문에서는 통합된 다차원 개념 계층지원을 위한 데이터 큐브 색인을 제안한다. 이는 개념 계층에 대한 정보와 사실 테이블에 지장된 튜플들을 참조하여 각각의 차원에 대해 생성된 개념 계층 트리들이 연결되어 통합된 색인이다. 이 때, 중복되는 개념계층 트리가 존재할 경우 이를 공유함으로써 저장 비용을 줄인다. 특히 제안 기법은 공간 및 비공간 차원이 통합된 개념 계층 트리들을 사용하므로, 공간 및 비공간 차원에 대한 OLAP 연산 비용이 감소한다.
데이터 큐브는 다차원 데이터 분석 및 멀티레벨 데이터 분석에 많이 사용되고 있는 중요한 데이터 구조이다. 최근 데이터 스트림의 온라인 분석에 대한 수요가 증가하면서 스트림 큐브, Flow 큐브, S-큐브 등의 다양한 데이터 큐브 구조와 기법이 제안되었다. 그러나 기존 기법들은 데이터 큐브 생성 시 고비용이 요구되는 단점을 가지고 있어 효과적인 데이터 구조, 질의 방법 및 알고리즘에 대한 연구가 필요하다. 스트림 큐브 기법에서는 H-큐빙 기법을 사용하여 큐보이드를 선택하고, 계산된 셀들을 인기 패스에 있는 큐보이드들로 구성된 H-트리에 저장한다. 그러나 스트림 큐브 기법에서는 H-트리에 데이터를 비순차적으로 삽입하기 때문에 H-큐빙 기법을 사용하여 질의를 처리할 때 제한성을 갖고 있다. 본 논문에서는 데이터의 트리 구조의 각 층에 대한 인덱스를 구축하여 스트림 데이터에 대한 빠른 삽입 연산을 지원하는 $H^*$-tree 구조와, popular-path에 존재하지 않는 큐보이드를 빨리 계산하여 스트림 데이터에 대한 빠른 애드 혹 질의 응답을 지원하는 $H^*$-cubing 기법을 제안한다. 성능평가를 통하여 제안한 $H^*$-tree 기법은 보다 적은 큐브 구축 시간을 지원하며, $H^*$-cubing 기법이 stream cube 기법보다 빠른 애드 혹질의 응답 시간을 소요하며, 보다 적은메모리를 사용함을 보여준다.
데이터 웨어하우스는 OLAP의 질의 처리 성능을 놓이고 사용자에게 빠른 응답을 제공하기 위긴 데이터 큐브의 결과를 실체화된 뷰로 저장한다. 최적의 사용자 응답 시간을 제공하기 위해서는 데이터 큐브의 전체를 저장하는 것이 졸지만 실체화 뷰는 일반적으로 물리적 저장소에 저장되기 때문에 데이터 큐브 전체를 저장하는 것은 저장 공간의 오버헤드를 초래하는 문제점을 가진다. 본 논문에서는 데이터베이스 클러스터에 대용량의 실제화 부를 저장하는 기법을 제안한다. 제안하는 기법은 실체화 뷰의 선택 기준으로 부의 실체화 이익과 뷰들 간의 의존성을 데이터베이스 클러스터 환경에 맞게 제시하고 선택 기준에 따라 실체화 뷰를 서로 다른 노드에 저장함으로서 각 노드들의 실체화 이익을 균등하게 유지한다. 이는 질의가 하나의 노드에 집중되는 현상을 방지함으로서 각 노드의 효율성을 최대로 높일 수 있는 기법이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.