Proceedings of the Korea Information Processing Society Conference
/
2002.11c
/
pp.1819-1822
/
2002
OLAP(On-line Analytical Processing)은 데이터를 다차원적으로 집계하여 그 결과를 온라인으로 사용자에게 제공함으로써 고부가가치 창출에 사용되는 비즈니스 인텔리젼스 기술 중의 하나이다. 질의 처리 시간 제약 조건을 만족하기 위해 OLAP 시스템들은 다차원적 집계 결과를 미리 계산하여 저장해 둔다. 이 때 저장되는 데이터를 OLAP 큐브(cube)라고 하며, 데이터의 분석은 주로 큐브를 브라우징하면서 이루어진다. 본 연구에서는 웹 서비스를 통해 큐브를 브라우징할 수 있는 ‘웹 OLAP 큐브 브라우저(WOCB)'를 개발하였다. WOCB는 본 연구팀이 개발한 웹 서비스 기반의 OLAP API인 XMLMD를 사용하여 개발되었으며, 웹 서비스를 통해 전송되는 OLAP 큐브 데이터를 XML, HTML, 엑셀, 그래프 등의 다양한 형태로 검색할 수 있는 기능을 제공한다. 본 연구 결과는 이기종 플랫폼 환경에 분산되어 있는 OLAP 서버들을 통합할 때 하나의 컴포넌트로 사용될 수 있다는 장점을 갖는다.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.127-129
/
2001
데이터 웨어하우스의 데이터를 다차원적으로 분석하여 그 결과를 온라인으로 사용자에게 제공하는 것을 OLAP 이라고 하고, 이 때 데이터를 큐브라고 불리는 배열에 저장해 두고 데이터를 위치정보를 통해 엑세스하는 시스템을 MOLAP 시스템이라고 한다. OLAP 연산 도중에 디스크로부터 읽어야 하는 데이터의 양을 감소시키기 위해 큐브를 압축된 청크 단위로 저장하는 방안이 이미 제안되고 있으나, 큐브의 데이터 분포, 청크와 디스크 블록의 크기 관계 등을 고려하여 디스크 엑세스를 줄이는 방안에 관한 연구는 아직 소개된 바가 없다. 본 연구에서는 청크들을 밀도를 기준으로하여 군집화 하고, 큐브내의 인접 청크들을 가능한 한 동일한 디스크 블록에 속하게 함으로써, OLAP의 주요 연산인 슬라이스, 다이스와 같은 연산의 속도를 향상시키는 방안을 제시한다. 제안한 저장구조는 실험을 통해 그 효율성을 증명하였다.
MOLAP is a technology that accelerates multidimensional data analysis by storing data in a multidimensional array and accessing them using their position information. Depending on a mapping scheme of a multidimensional array onto disk, the sliced of MOLAP operations such as slice and dice varies significantly. [1] proposed a MOLAP cube storage scheme that divides a cube into small chunks with equal side length, compresses sparse chunks, and stores the chunks in row-major order of their chunk indexes. This type of cube storage scheme gives a fair chance to all dimensions of the input data. Here, we developed a variant of their cube storage scheme by placing chunks in a different order. Our scheme accelerates slice and dice operations by aligning chunks to physical disk block boundaries and clustering neighboring chunks. Z-indexing is used for chunk clustering. The efficiency of the proposed scheme is evaluated through experiments. We showed that the proposed scheme is efficient for 3~5 dimensional cubes that are frequently used to analyze business data.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.199-201
/
2003
온라인 분석처리 시스템의 핵심 기술인 큐브를 효과적으로 산출하기 위한 많은 연구들이 이루어 졌다. 이러한 연구는 크게 온라인 분석처리 시스템의 결과 데이터를 저장하는 방식에 의해 MOLAP과 ROLAP으로 구분하여 이루어 졌다. 최근에 온라인 분석처리 시스템에서 큐브 산출에 대한 연구로 다중키 엑세스를 효율적으로 처리하는 다차원 파일 구조를 사용하여 집계 연산의 효율을 높이는 연구가 이루어졌다. 본 논문은 이러한 연구들을 바탕으로 다차원 파일 구조를 사용하여 효과적으로 큐브를 산출하고 결과 값을 미리 저장하는 일반적인 방법을 제안한다.
A range-sum query is very popular and becomes important in finding trends and in discovering relationships between attributes in diverse database applications. It sums over the selected cells of an OLAP data cube where target cells are decided by specified query ranges. The direct method to access the data cube itself forces too many cells to be accessed, therefore it incurs severe overheads. The prefix-sum cube was proposed for the efficient processing of range-sum queries in OLAP environments. However, the prefix-sum cube has been criticized due to its space requirement. In this paper, we propose a lossless compression method called the overlapped-subcube that is developed for the purpose of compressing prefix-sum cubes. A distinguished feature of the overlapped-subcube is that searches can be done without decompressing. The overlapped-subcube reduces the space requirement for storing prefix-sum cubes, and improves the query performance.
MOLAP systems store data in a multidimensional away called a 'cube' and access them using way indexes. When a cube is placed into disk, it can be Partitioned into a set of chunks of the same side length. Such a cube storage scheme is called the chunk-based MOLAP cube storage scheme. It gives data clustering effect so that all the dimensions are guaranteed to get a fair chance in terms of the query processing speed. In order to achieve high space utilization, sparse chunks are further compressed. Due to data compression, the relative position of chunks cannot be obtained in constant time without using indexes. In this paper, we propose a bitmap index for chunk-based MOLAP cubes. The index can be constructed along with the corresponding cube generation. The relative position of chunks is retained in the index so that chunk retrieval can be done in constant time. We placed in an index block as many chunks as possible so that the number of index searches is minimized for OLAP operations such as range queries. We showed the proposed index is efficient by comparing it with multidimensional indexes such as UB-tree and grid file in terms of time and space.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.163-165
/
2005
ROLAP 시스템에서는 다차원 OLAP 큐브를 관계 데이터베이스 내에 여러 집계 테이블을 사용하여 저장하며, 관계 DBMS 기능을 그대로 이용하므로 구현이 간단하다. 이들 집계 테이블들은 대용량의 소스 데이타(즉, 사실 테이블)를 정렬한 후 이에 대한 집계 값을 계산하므로 큐브를 생성하는데 많은 시간이 소요된다. 이러한 다차원 큐브를 효율적으로 생성할 수 있는 여러 가지 방법이 제안되었다. 이들 방법들은 큐브 생성 시간이 사실 테이블을 정렬하는데 주로 소요되므로 이 횟수를 줄이는 기법을 주로 제안하였다. 그러나 이러한 큐브 생성 알고리즘의 성능은 실제 DBMS 상에서 평가되지 않았다. 이 연구에서는 기존의 큐브 생성 알고리즘들을 관계 DBMS 상에서 그 성능을 비교 평가하였다.
Most decision support functions of spatial data warehouse rely on the OLAP operations upon a spatial cube. Meanwhile, higher performance is always guaranteed by indexing the cube, which stores huge amount of pre-aggregated information. Hierarchical Dwarf was proposed as a solution, which can be taken as an extension of the Dwarf, a compressed index for cube structures. However, it does not consider the spatial dimension and even aggregates incorrectly if there are redundant values at the lower levels. OLAP-favored Searching was proposed as a spatial hierarchy based OLAP operation, which employs the advantages of R-tree. Although it supports aggregating functions well against specified areas, it ignores the operations on the spatial dimensions. In this paper, an indexing approach, which aims at utilizing the concept hierarchy of the spatial cube for decision support, is proposed. The index consists of concept hierarchy trees of all dimensions, which are linked according to the tuples stored in the fact table. It saves storage cost by preventing identical trees from being created redundantly. Also, it reduces the OLAP operation cost by integrating the spatial and aspatial dimensions in the virtual concept hierarchy.
Data cube plays an important role in multi-dimensional, multi-level data analysis. Meeting on-line analysis requirements of data stream, several cube structures have been proposed for OLAP on data stream, such as stream cube, flowcube, S-cube. Since it is costly to construct data cube and execute ad-hoc OLAP queries, more research works should be done considering efficient data structure, query method and algorithms. Stream cube uses H-cubing to compute selected cuboids and store the computed cells in an H-tree, which form the cuboids along popular-path. However, the H-tree layoutis disorderly and H-cubing method relies too much on popular path.In this paper, first, we propose $H^*$-tree, an improved data structure, which makes the retrieval operation in tree structure more efficient. Second, we propose an improved cubing method, $H^*$-cubing, with respect to computing the cuboids that cannot be retrieved along popular-path when an ad-hoc OLAP query is executed. $H^*$-tree construction and $H^*$-cubing algorithms are given. Performance study turns out that during the construction step, $H^*$-tree outperforms H-tree with a more desirable trade-off between time and memory usage, and $H^*$-cubing is better adapted to ad-hoc OLAP querieswith respect to the factors such as time and memory space.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.106-108
/
2004
데이터 웨어하우스는 OLAP의 질의 처리 성능을 놓이고 사용자에게 빠른 응답을 제공하기 위긴 데이터 큐브의 결과를 실체화된 뷰로 저장한다. 최적의 사용자 응답 시간을 제공하기 위해서는 데이터 큐브의 전체를 저장하는 것이 졸지만 실체화 뷰는 일반적으로 물리적 저장소에 저장되기 때문에 데이터 큐브 전체를 저장하는 것은 저장 공간의 오버헤드를 초래하는 문제점을 가진다. 본 논문에서는 데이터베이스 클러스터에 대용량의 실제화 부를 저장하는 기법을 제안한다. 제안하는 기법은 실체화 뷰의 선택 기준으로 부의 실체화 이익과 뷰들 간의 의존성을 데이터베이스 클러스터 환경에 맞게 제시하고 선택 기준에 따라 실체화 뷰를 서로 다른 노드에 저장함으로서 각 노드들의 실체화 이익을 균등하게 유지한다. 이는 질의가 하나의 노드에 집중되는 현상을 방지함으로서 각 노드의 효율성을 최대로 높일 수 있는 기법이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.