• 제목/요약/키워드: OLAP(Distributed OLAP)

검색결과 6건 처리시간 0.021초

Cloud P2P OLAP: 클라우드 컴퓨팅 환경에서의 Peer-to-Peer OLAP 질의처리기법 및 인덱스 구조 (Cloud P2P OLAP: Query Processing Method and Index structure for Peer-to-Peer OLAP on Cloud Computing)

  • 주길홍;김훈동;이원석
    • 인터넷정보학회논문지
    • /
    • 제12권4호
    • /
    • pp.157-172
    • /
    • 2011
  • 최근 분산 OLAP은 분산 환경에 적용하기 위하여 DHT기반의 P2P OLAP과 그리드 OLAP연구가 활발하게 진행되고 있다. 그러나 클라우드 컴퓨팅 환경에 적용하기 위하여 P2P OLAP은 structured P2P 특성 때문에 다차원 범위 질의에 문제점이 있고, Grid OLAP은 인접성 및 시계열 고려가 없기 때문에 쿼리 자체의 서브 �V 조회 알고리즘 연구에 치중되어 있다. 따라서 본 논문은 클라우드 컴퓨팅에 적합한 환경 제공을 위해 사용자의 조회 결과가 시계열적 특성으로 여러 사용자에 의해 재사용이 가능하고, 서버상의 휘발성 조회 큐브가 사용자 로컬 메모리에서 직접 분석 질의 시 효율이 좋다는 것에 초점을 두어 중앙관리 P2P방식을 제안하였다. 또한 빠른 질의 결과 및 다차원 범위질의를 위한 다단계 Hybrid P2P방식에 인덱스 부하 분산 및 성능 향상을 위한 클라우드 시스템을 접목하여 Cloud P2P OLAP을 제안하였다. 이를 위한 인덱스 구조로는 큐브 위상관계 트리와 인접성 2차원 Quadtree에, 시계열 Interval-트리를 접목하였으며, 이는 조회나 갱신 시에 일반 OLAP에 비해 큰 효율성을 보였다.

기업 활동 지원을 위한 SDW 및 Spatial OLAP 데이터 큐브 설계 (SDW and Spatial OLAP Data Cube Design for Enterprise Activities Support)

  • 김승용;염재홍;경민주
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.133-136
    • /
    • 2010
  • A lot of GIS DB in Korea is distributed and integration for decision making is difficult. Therefore, the SDW is needed to improve the problems and enhance efficiency. The SDW is used for making decisions about various problems by integrating scattered spatial information. This study analyzes business activity of a local government and plan the data cube to implement spatial OLAP for an efficient decision making.

  • PDF

맵리듀스를 이용한 정렬 기반의 데이터 큐브 분산 병렬 계산 알고리즘 (Sort-Based Distributed Parallel Data Cube Computation Algorithm using MapReduce)

  • 이수안;김진호
    • 전자공학회논문지
    • /
    • 제49권9호
    • /
    • pp.196-204
    • /
    • 2012
  • 최근 많은 응용 분야에서 대규모 데이터에 대해 온라인 다차원 분석(OLAP)을 사용하고 있다. 다차원 데이터 큐브는 OLAP 분석에서 핵심 도구로 여긴다. 본 논문에서는 맵리듀스 분산 병렬 처리를 이용하여 효율적으로 데이터 큐브를 계산하는 방법을 연구하고자 한다. 이를 위해, 맵리듀스 프레임워크에서 데이터 큐브 계산 방법으로 잘 알려진 PipeSort 알고리즘을 구현하는 효율적인 방법에 대해서 살펴본다. PipeSort는 데이터 큐브의 한 큐보이드에서 동일한 정렬 순서를 갖는 여러 큐보이드를 한 파이프라인으로 한꺼번에 계산하는 효율적인 방식이다. 이 논문에서는 맵리듀스 프레임워크에서 PipeSort의 파이프라인을 구현한 네 가지 방법을 20대의 서버에서 수행하였다. 실험 결과를 보면, 고차원 데이터에 대해서는 PipeMap-NoReduce 알고리즘이 우수한 성능을 보였으며, 저차원 데이터에 대해서는 Post-Pipe 알고리즘이 더 우수함을 보였다.

RSS와 OLAP 큐브를 이용한 FOAF의 동적 관리 기법 (A Dynamic Management Method for FOAF Using RSS and OLAP cube)

  • 손종수;정인정
    • 지능정보연구
    • /
    • 제17권2호
    • /
    • pp.39-60
    • /
    • 2011
  • 웹 2.0 기술이 소개된 이후 소셜 네트워크 서비스는 미래 정보기술의 기초로서 중요하게 인식되고 있다. 이에, 웹2.0 환경에서 소셜 네트워크를 구축하기 위하여 온톨로지 기반의 사용자 프로필 기술 도구인 FOAF를 활용하기 위한 다양한 연구가 이뤄지고 있다. 그러나 FOAF를 이용하여 소셜 네트워크를 생성 및 관리하는 대부분의 방법은 시간의 흐름에 따라 변화하는 사용자의 소셜 네트워크를 자동적으로 반영하기 어려운 단점이 있으며 다양한 소셜 미디어 서비스가 제공되는 환경에서는 FOAF를 동적으로 관리하기가 쉽지 않다. 따라서 본 논문에서는 기존 FOAF를 이용한 소셜 네트워크 추출방법의 한계를 극복하기 위하여 사용자 프로파일 기술 언어인 FOAF와 웹 저작물 출판 매커니즘인 RSS를 OLAP 시스템에 적용시켜 동적으로 FOAF를 갱신하고 관리하기 위한 방법을 제안한다. 본 논문에서 제안하는 방법은 수집한 FOAF와 RSS 파일들을 스타스키마로 설계된 데이터베이스에 넣어 OLAP 큐브를 생성한다. 그리고 OLAP 연산을 이용하여 사용자의 연결관계를 분석하고 FOAF에 그 결과를 반영한다. 본 논문에서 제안하는 방법은 이기종 분산처리 환경 하에서 데이터의 상호호환성을 보장할 뿐만 아니라 시간의 흐름에 따른 사용자의 관심 및 이슈 등의 변화를 효과적으로 반영한다.

관계형 데이터베이스에서 PIVOT 연산과 차등 파일을 이용한 수평 뷰의 점진적인 관리 (Incremental Maintenance of Horizontal Views Using a PIVOT Operation and a Differential File in Relational DBMSs)

  • 신성현;김진호;문양세;김상욱
    • 정보처리학회논문지D
    • /
    • 제16D권4호
    • /
    • pp.463-474
    • /
    • 2009
  • OLAP 이나 e-비즈니스 환경에서는 다차원 데이터의 효율적인 분석을 위하여, 데이터를 여러 형태로 표현하거나 저장한다. 이러한 다차원 구조의 데이터를 차원 애트리뷰트들의 값으로 표시되는 넓은 형태의 수평 뷰로 표현한다. 수평 뷰는 여러 소스로부터 수집한 요약 정보를 유지하도록 실체 뷰로서 저장되며, 복잡한 질의들을 효율적으로 처리하기 위해 사용된다. 그러나, 소스 데이터가 변경될 경우 수평 뷰들의 내용도 수정해야 하는 데, 소스 데이터들이 여러 사이트에 분산되어 있기 때문에 수평 뷰를 관리하는 것은 어렵다. 따라서, 본 연구에서는 점진적인 뷰 관리 방법 중의 하나로 차등 파일을 이용하여 수평 뷰를 관리하는 효율적인 방법을 제시한다. 이러한 방법은 상용 RDBMS에서 제공하는 PIVOT 연산을 이용하여 저장된 수직 형태의 소스 테이블을 수평 뷰로 변환하고, 수직 테이블의 변경 사항을 반영한 차등 파일을 이용하여 수평 뷰에서도 동일하게 적용하는 방법이다. 이를 위해, 우선 저장된 수직 테이블에서 수평 뷰로 변환하여 처리하는 전체적인 프레임워크를 제안한다. 제안한 프레임워크 하에서 수직 테이블을 수평 뷰로 변환하는 PIVOT 연산을 정의한다. 다음으로, 수직 테이블로부터 데이터가 변경될 경우, 데이터에 대한 변경 사항을 차등 파일로 저장한 후, 이를 이용하여 수평 뷰를 갱신하는 방법을 제안한다. 특히, 차등 파일의 구조는 수평 뷰의 구조와 다르기 때문에, 수평 뷰에 적합하도록 변경 사항을 변환해야 한다. 마지막으로 실험을 통하여 제안한 방법은 다른 방법에 비해서 평균 1.2$\sim$5.0배까지 성능을 향상시킴을 보인다.

웹 로그에서의 Apriori 알고리즘 기반 사용자 액세스 패턴 발견 (User Access Patterns Discovery based on Apriori Algorithm under Web Logs)

  • 염종림;정석태
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권6호
    • /
    • pp.681-689
    • /
    • 2019
  • 웹 사용 패턴 발견은 웹 로그 데이터를 사용하는 고급 수단이며 웹 로그 데이터 마이닝에 데이터 마이닝 기술을 적용한 특정 응용이다. 교육 분야에서 데이터 마이닝 (DM)은 데이터 마이닝 기술을 교육 데이터 (대학의 웹 로그, e-러닝, 적응형 하이퍼미디어 및 지능형 튜터링시스템 등)에 적용한다. 따라서 교육 연구 문제를 해결하기 위해 이러한 유형의 데이터를 분석하는 것이 목표이다. 본 논문에서는 대학의 웹 로그 데이터가 데이터 마이닝의 연구 대상으로 사용되어 진다. 데이터베이스 OLAP 기술을 사용하여 웹 로그 데이터가 데이터 마이닝에 사용될 수 있는 데이터 형식으로 사전 처리되고 그 처리 결과가 MSSQL에 저장된다. 동시에 처리 된 웹 로그 레코드를 기반으로 기본 데이터 통계 및 분석이 완료된다. 또한 웹 사용 패턴 마이닝의 Apriori Algorithm 및 구현 프로세스를 소개하고 Python 개발 환경에서 Apriori Algorithm 프로그램을 개발했다. 그런 다음 Apriori Algorithm의 성능을 보이고 웹 사용자 액세스 패턴의 마이닝을 실현했다. 이 연구 결과는 교육 시스템 개발에 패턴을 적용하는데 중요한 이론적 의미를 갖는다. 다음 연구로는 분산 컴퓨팅 환경에서 Apriori Algorithm의 성능 향상을 연구하는 것이다.