• Title/Summary/Keyword: OH bond

Search Result 445, Processing Time 0.028 seconds

The Effects of the Structural Characteristics on Properties of Their Bridging OH Groups for $AlPO_4-5$ Molecular Sieve : MNDO Calculations ($AlPO_4-5$ 분자체에서 가교 OH 그룹의 성질에 대한 구조 특성 효과 : MNDO 계산)

  • Son, Man-Shick;Lee, Chong-Kwang;Paek, U-Hyon
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.9
    • /
    • pp.787-792
    • /
    • 1993
  • Semiempirical MNDO calculations are employed to study relation properties on bridging OH group with Al-O(P-O) bond length and Al-O-P bond angle of structural characteristics using birdging $(OH)_3AlOP(OH)_3$ and $(OH)_3AlOHP(OH)_3^+$ model culster. We know that the O-H bond dissociation energy of bridging OH group is increased with increasing Al-O(P-O) bond length and decreasing Al-O-P bond angle. The bridging OH group is formed into enlarged Al-O(P-O) bond length and shortened Al-O-P bond angle in bridging oxygen atom by a hydrogen migration. The negative net charge of bridging oxygen atom is increased with longer Al-O-P bond angle, while the positive net charge is decreased with longer Al-O-P bond angle.

  • PDF

Generation of Si-O-C Bond without Si-$CH_3$ Bond in Hybrid Type SiOC Film

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.1-4
    • /
    • 2008
  • The chemical shift of SiOC film was observed according to the flow rate ratio. SiOC film had the broad main band of $880\sim1190cm^{-1}$ and the sharp Si-$CH_3$ bond at $1252cm^{-1}$, and the peak position of the main bond in the infrared spectra moved to high frequency according to the increasing of an BTMSM flow rate. So the increment of the alkyl group induced the C-H bond condensation in the film, and shows the blueshift in the infrared spectra. In the case of P5000 system of Applied Materials Corporation, the strong bond of Si-CH3 bond in precursor does not enough to dissociated and ionized, because low plasma energy due to the capactive coupled CVD. Therefore, there was the sharp peak of Si-$CH_3$ bond at $1252cm^{-1}$.

  • PDF

Effect of deep eutectic solvent (DES) on the extraction of asiaticoside and madecassoside from Centella asiatica (병풀(Centella asiatica)로부터의 asiaticoside와 madecassoside의 추출효율에 미치는 DES의 영향)

  • Jaeyeong Choi;Yuim Jeon;Sung Ho Ha
    • Analytical Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.128-134
    • /
    • 2023
  • Centella asiatica (C. asiatica) extracts, including asiaticoside and madecassoside, are used in ointments to treat the wound and atopic dermatitis due to their antibacterial and skin-regenerating effects in Asia. Therefore, research on the cultivation and extraction efficiency of C. asiatica is being actively conducted to increase commercialization efficiency. In this study, various deep eutectic solvents (DESs) were prepared and used as the extraction solvents according to the mole ratio between the hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD). And then, the extraction yields in distilled water (DW) and methanol (MeOH), commonly used extraction solvents for C. asiatica, were compared and analyzed by HPLC in the optimized operating condition. As a result, a mixture of DW and DES at a ratio of 3:7 showed about 1.4 times higher extraction efficiency than MeOH only. Conversely, the extraction efficiency in a mixture of MeOH and DES at a ratio of 3:7 was about 6 % lower than that in MeOH only.

Bond Stress-Slip Model of Reinforced Concrete Member under Repeated Loading (반복하중을 받는 철근콘크리트 부재의 부착응력-슬립 모델)

  • Oh, Byung-Hwan;Kim, Se-Hoon;Kim, Ji-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.104-107
    • /
    • 2004
  • The crack widths of reinforced concrete flexural members are influenced by repetitive fatigue loadings. The bond stress-slip relation is necessary to estimate these crack widths realistically. The purpose of the present study is, therefore, to propose a realistic model for bond stress-slip relation under repeated loading. To this end, several series of tests were conducted to explore the bond-slip behavior under repeated loadings. Three different bond stress levels with various number of load cycles were considered in the tests. The present tests indicate that the bond strength and the slip at peak bond stress are not influenced much by repeated loading if bond failure does not occur. However, the values of loaded slip and residual slip increase with the increase of load cycles. The bond stress after repeated loading approaches the ultimate bond stress under monotonic loading and the increase of bond stress after repeated loading becomes sharper as the number of repeated loads increases. The bond stress-slip relation after repeated loading was derived as a function of residual slip, bond stress level, and the number of load cycles. The models for slip and residual slip were also derived from the present test data. The number of cycles to bond slip failure was derived on the basis of safe fatigue criterion, i.e. maximum slip criterion at ultimate bond stress.

  • PDF

Theoretical Studies on the Hydrogen Atom Transfer Reaction (Ⅱ)$^*$

  • Lee, Ik-Choon;Song, Chang-Hyun;Lee, Byung-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.6
    • /
    • pp.362-366
    • /
    • 1985
  • The hydrogen atom transfer reaction between substituted methane, $CH_3X,$ and its radical, $CH_2X(X=H,F,CH_3,CN,OH\;and\;NH_2$ was studied by MINDO/3 method. The transition state(TS) structure and energy barriers were determined and variation of the transition state and of the reactivity due to the change of X were analyzed based on the potential energy surface characteristics. It was found that the greater the radical stabilization energy. the looser the TS becomes; the TS occurs at about 15% stretch of the C-H bond, which becomes longer as the radical stabilization energy of $CH_2X$ increasers. The intrinsic barrier, ${\Delta}E*_{x.x},$ of the reaction with X was found to increase in the order $H The degree of bond stretch of the C-H bond stretch of the C-H bond at the TS also had the same order indicating that the homolytic bond cleavage of the C-H bond is rate-determining. Orbital interactions at the TS between LUMO of the fragment $C{\ldots}H{\ldots}C$ and the symmetry adapted pair of nonbonding, $n{\pm}(=n_1{\pm}n_2),$ or pi orbitals of the two X atoms were shown to be the dominant contribution in determining tightness or looseness of the TS. The Marcus equation was shown to apply to the MINDO/3 barriers and energy changes of the reaction.

Effects of filler addition to bonding agents on shear bond strength

  • Oh, Young;Park, Kyung-Won;Oh, Myoung-Hwan;Um, Chung-Moon
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.559.2-559
    • /
    • 2001
  • Fanning et al.(1995) suggested that the incorporation of filler particles into a system's adhesive could increase the shear bond strength by improving the mechanical properties. In this study, shear bond strengths of experimental filled adhesives with varying filler levels were tested to determine the optimal filler level. The diametrile tensile strength and thickness of each experimental adhesive were also examined to evaluate if there is a relation between shear bond strength and mechanical properties of adhesive.(omitted)

  • PDF

Geometries and Energies of S$_N$2 Transition States$^\dag$

  • Lee, Ik-Choon;Kim, Chan-Kyung;Song, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.391-395
    • /
    • 1986
  • MNDO calculations were carried out to determine reactant complexes and transition states of the $S_N2$ reactions of $CH_3X\;+\;Y^-\;{\to}\;CH_3Y\;+\;X^-$ where X = F, Cl, CN and Y = CN, OH, F, Cl. The leaving group ability was found to vary inversely with the activation barrier, which in turn was mainly ascribable to the deformation energies accompanied with bond stretching of C-X bond and inversion of $CH_3$ group. The nucleophilicity was shown to be in the order $Cl^->F^->OH^->CN^-$ but the effect on the activation barrier was relatively small compared with that of the leaving group. The bond breaking and bond formation indices and energy decomposition analysis showed that the TS for the reaction of $CH_3$Cl occurs in the early stage of the reaction coordinate relative to that of $CH_3$F. It has been shown that the potential energy surface (PES) diagrams approach can only accommodate thermodynamic effects but fails to correlate intrinsic kinetic effects on the TS structure.

Study on the nucleophilic reaction on Orgniac Thin Films (유기물 박막에서 일어나는 친핵성 반응에 대한 연구)

  • Oh, Teresa;Kim, Hong-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.170-171
    • /
    • 2006
  • The chemical shift of SiOC film was observed according to the flow rate ratio. SiOC film has the broad main band of $880{\sim}1190cm^{-1}$ and the sharp Si-$CH_3$ bond at $1252cm^{-1}$, and the infrared spectra in the Si-O-C bond moved to low frequency according to the increasing of an oxygen flow rate. The chemical shift affected the carbon content in the SiOC film, and the decreasing of carbon atoms elongated the C-H bonding length, relatively. The main bond without the sharp Si-$CH_3$ bond at $1252cm^{-1}$ consisted of Si-C, C-O and Si-O bonds, and became the bonding structure of the Si-O-C bond.

  • PDF

Application of DV-X$\alpha$ Method to ${\gamma}$-2CaO.SiO$_2$

  • Yamaguchi, Norio;Fujimori, Hirotaka;Ioku, Koji;Goto, Seishi;Nakayasu, Tetsuo
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.339-342
    • /
    • 2000
  • In the present study, we attempted to apply DV-X$\alpha$ method to expressing the reactivity of materials. The expression of reactivity was discussed by comparison between ${\gamma}$-C$_2$G having hydraulic activity and ${\gamma}$-C$_2$S not having hydraulic activity at normal conditions. It was found that the model cluster used for calculation can finely reproduce the bulk and surface states using with and without point charge, respectively. The hydration state was also represented by placing OH ̄ on the surface of the cluster. It was calculated that the bond strength of the first layer (as surface) was bigger than that of inner layers (as bulk) for ${\gamma}$-C$_2$S while that of the first layer for ${\gamma}$-C$_2$G was smaller than that of inner layers. Subsequently a model in which OH ̄ is coordinated on Ca at the surface was also calculated. The bond strength with OH ̄ was stronger than that without OH ̄, while for ${\gamma}$-C$_2$G the bond strength with OH ̄ was weaker than that without OH ̄. From these results, it is concluded that the hydraulic activity depends on whether the bond strength for hydrated state becomes weaker than that unhydrated state or not.

  • PDF