• Title/Summary/Keyword: OH 라디칼-Ct

Search Result 3, Processing Time 0.017 seconds

Evaluation of Ozone Application for Drinking Water Treatment Process Using DAF (DAF를 이용한 정수처리 공정에서의 오존 적용성 평가)

  • Kang, Tae-Hee;Oh, Byung-Soo;Cheong, Youn-Cheong;Kwon, Soon-Buhm;Sohn, Byeong-Yong;Kang, Joon-Wun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.567-572
    • /
    • 2005
  • In this study, a lab-scale test was performed to apply the ozone process in drinking water treatment plant using dissolved ai, flotation(DAF). The kinetic study on the ozone decay and hydroxyl(OH) radical formation was investigated by several parameters, such as I.D(Instantaneous ozone demand), $k_c$(ozone decomposition rate), ozone-Ct and OH radical-Ct. Ozonation of several target waters, such as raw water, DAF treated water and filtrate, was conducted to select the optimum position and dosage of ozone process. The highest value of Ozone-Ct and OH radical-Ct was observed at DAF treated water at initial run time($0{\sim}30\;min$). From the results of ozonation, the intermediate ozonation was proposed as the optimum position and the effective dose of ozone was determined to be $1{\sim}2\;mg/L$.

A Study on the Ozone Consumption Rate for Drinking Water Treatment Process with Ozone Application (오존의 정수처리 적용을 위한 오존소비인자에 관한 연구)

  • Kang, Tae-Hee;Oh, Byung-Soo;Kwon, Soon-Buhm;Sohn, Byeong-Yong;Kang, Joon-Wun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.663-669
    • /
    • 2005
  • The aim of this study was to investigate the ozone decay pattern for the effective application of ozone in drinking water treatment. In order to measure the ozone decomposition in water, ozone measuring instrument was developed with flow injection analysis (FIA) method. From the result of continuous residual ozone concentration in water, it was confirmed that the ozone decay pattern was divided with instantaneous ozone demand(I.D) and pseudo first-order rate($k_c$) phases, which were influenced by the variation of ozone dose. The empirical model obtained from I.D and $k_c$ values enabled us to predict the residual ozone concentration according to the reaction time, showing the high correlation between model and experimental values. The concentration of OH radical and $R__{ct}$ could be indirectly measured by OH radical probe compound. In both I.D and $k_c$ phases, the production pattern of OH radical could be observed, which was also affected by the variation of ozone dose. Finally, it was confirmed that the ozone consumption rate was varied according to the each drinking water treatment process and seasoning. Therefore, the optimum position and dosage of ozone have to be selected by considering various factors.

Characteristic behaviors of ozone decomposition and oxidation of pharmaceuticals during ozonation of surface waters in Ulsan (울산시 상수원수에서의 오존분해 특성 및 의약물질 분해 거동 연구)

  • Lee, Hye-Jin;Lee, Hongshin;Lee, Changha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.39-47
    • /
    • 2013
  • This study demonstrates the oxidative degradation of pharmaceutical compounds during ozonation of surface waters in Ulsan. Diclofenac, carbamazepine, bezafibrate, and ibuprofen were selected as surrogate pharmaceutical compounds, and ozonation experiments were performed using raw waters collected from the Sayeon Dam and the Hoeya Dam in Ulsan. Diclofenac and carbamazepine which have high reactivity with molecular ozone showed higher removal efficiencies than bezafibrate and ibuprofen during ozonation. The addition of tert-butanol, a hydroxyl radical scavenger, increased the removal efficiencies of diclofenac and carbamazepine by increasing the ozone exposure. However, the oxidation of bezafibrate and ibuprofen was inhibited by the presence of tert-butanol due to the suppression of the exposure to hydroxyl radical. The elimination of the selected pharmaceuticals could be successfully predicted by the kinetic model base on the $R_{ct}$ concept. Depending on the experimental condition, $R_{ct}$ values were determined to be $(1.54{\sim}3.32){\times}10^{-7}$ and $(1.19{\sim}3.04){\times}10^{-7}$ for the Sayeon Dam and the Hoeya Dam waters, respectively. Relatively high $R_{ct}$ values indicate that the conversion of $O_3$ into $^{\cdot}OH$ is more pronounced for surface waters in Ulsan compared to other water sources.